Advertisements
Advertisements
प्रश्न
For the demand function x = `25/"p"^4`, 1 ≤ p ≤ 5, determine the elasticity of demand.
उत्तर
The demand function, x = `25/"p"^4`, 1 ≤ p ≤ 5
The elasticity demand, ηd = `- "p"/x * "dx"/"dp"`
x = `25/"p"^4`
x = 25 × p-4
`"dx"/"dp" = (25)(-4)"p"^(-4-1)`
`= 25 xx -4 xx "p"^(-5)`
`= 25 xx (-4)xx1/"p"^5`
Hint for differentiation
`"d"/"dx"(1/"x"^"n") = "-n"/("x"^("n + 1"))`
x = `25/"p"^4`
`"dx"/"dp" = 25((-4)/"p"^5)`
∴ ηd = `- "p"/x * "dx"/"dp"`
`= (-"p")/(25/"p"^4) xx 25 xx (-4)xx1/"p"^5`
`= (-"p"^5)/25 xx 25 xx (-4) xx 1/"p"^5` = 4
APPEARS IN
संबंधित प्रश्न
The total cost of x units of output of a firm is given by C = `2/3x + 35/2`. Find the
- cost when output is 4 units
- average cost when output is 10 units
- marginal cost when output is 3 units
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = (a – bx)2
Find the equilibrium price and equilibrium quantity for the following functions.
Demand: x = 100 – 2p and supply: x = 3p – 50.
The cost function of a firm is C = x3 – 12x2 + 48x. Find the level of output (x > 0) at which average cost is minimum.
Find the elasticity of supply when the supply function is given by x = 2p2 + 5 at p = 1.
Average fixed cost of the cost function C(x) = 2x3 + 5x2 – 14x + 21 is:
For the cost function C = `1/25 e^(5x)`, the marginal cost is:
Profit P(x) is maximum when
Average cost is minimum when:
A company begins to earn profit at: