Advertisements
Advertisements
प्रश्न
Profit P(x) is maximum when
विकल्प
MR = MC
MR = 0
MC = AC
TR = AC
उत्तर
MR = MC
APPEARS IN
संबंधित प्रश्न
The total cost of x units of output of a firm is given by C = `2/3x + 35/2`. Find the
- cost when output is 4 units
- average cost when output is 10 units
- marginal cost when output is 3 units
Revenue function ‘R’ and cost function ‘C’ are R = 14x – x2 and C = x(x2 – 2). Find the
- average cost
- marginal cost
- average revenue and
- marginal revenue.
If the demand law is given by p = `10e^(- x/2)` then find the elasticity of demand.
For the demand function x = `25/"p"^4`, 1 ≤ p ≤ 5, determine the elasticity of demand.
The demand function of a commodity is p = `200 - x/100` and its cost is C = 40x + 120 where p is a unit price in rupees and x is the number of units produced and sold. Determine
- profit function
- average profit at an output of 10 units
- marginal profit at an output of 10 units and
- marginal average profit at an output of 10 units.
The total cost function y for x units is given by y = 3x`((x+7)/(x+5)) + 5`. Show that the marginal cost decreases continuously as the output increases.
Find the equilibrium price and equilibrium quantity for the following functions.
Demand: x = 100 – 2p and supply: x = 3p – 50.
Find out the indicated elasticity for the following function:
p = xex, x > 0; ηs
Marginal revenue of the demand function p = 20 – 3x is:
If the average revenue of a certain firm is ₹ 50 and its elasticity of demand is 2, then their marginal revenue is: