Advertisements
Advertisements
Question
Profit P(x) is maximum when
Options
MR = MC
MR = 0
MC = AC
TR = AC
Solution
MR = MC
APPEARS IN
RELATED QUESTIONS
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = a – bx2
Show that MR = p`[1 - 1/eta_"d"]` for the demand function p = 400 – 2x – 3x2 where p is unit price and x is quantity demand.
The demand function of a commodity is p = `200 - x/100` and its cost is C = 40x + 120 where p is a unit price in rupees and x is the number of units produced and sold. Determine
- profit function
- average profit at an output of 10 units
- marginal profit at an output of 10 units and
- marginal average profit at an output of 10 units.
Find the price elasticity of demand for the demand function x = 10 – p where x is the demand p is the price. Examine whether the demand is elastic, inelastic, or unit elastic at p = 6.
Find the equilibrium price and equilibrium quantity for the following functions.
Demand: x = 100 – 2p and supply: x = 3p – 50.
The total cost function for the production of x units of an item is given by C = 10 - 4x3 + 3x4 find the
- average cost function
- marginal cost function
- marginal average cost function.
If demand and the cost function of a firm are p = 2 – x and C = -2x2 + 2x + 7 then its profit function is:
If the demand function is said to be inelastic, then:
For the cost function C = `1/25 e^(5x)`, the marginal cost is:
The demand function is always