Advertisements
Advertisements
Question
The demand function of a commodity is p = `200 - x/100` and its cost is C = 40x + 120 where p is a unit price in rupees and x is the number of units produced and sold. Determine
- profit function
- average profit at an output of 10 units
- marginal profit at an output of 10 units and
- marginal average profit at an output of 10 units.
Solution
The demand function, p = `200 - x/100`
Cost is C = 40x + 120
Revenue function, R(x) = px
`= (200 - x/100)x`
`= 200x - x^2/100`
(i) Profit function = R(x) – C(x)
`= 200x - x^2/100 - (40x + 120)`
`= 200x - x^2/100 - 40x - 120`
`= 160x - x^2/100 - 120`
(ii) Average profit (AP) = `"Total profit"/"Output"`
`= 1/x (160x - x^2/100 - 120)`
`= 160 - x/100 - 120/x`
Average profit at an output of 10 units
When x = 10, average profit = `160 - 10/100 - 120/10`
`= 160 -1/10 - 12`
`= 148 - 1/10`
= 148 – 0.1
= ₹ 147.9
(iii) Marginal profit [MP] = `"dP"/x`
`= "d"/"dx" (160x - x^2/100 - 120)`
`= 160 - "2x"/100`
`= 160 - x/50`
Marginal profit when x = 10, is = `160 - 10/50`
`= 160 - 1/5`
= 160 – 0.2
= ₹ 159.8
(iv) Average profit AP = `160 -x/100 - 120/x`
Marginal average profit (MAP) = `"d"/"dx"`(AP)
`= "d"/"dx" (160 - x/100 - 120/x)`
`= 0 - 1/100 - 120(- 1/x^2) ....[because "d"/"dx" (1/x) = (-1)/x^2]`
`= (-1)/100 + 120/x^2`
Marginal average profit (MAP) = `- 1/100 + 120/10^2`
=`- 1/100 + 120/100`
`= (- 1 + 120)/100`
`= 119/100`
= ₹ 1.19
APPEARS IN
RELATED QUESTIONS
The total cost of x units of output of a firm is given by C = `2/3x + 35/2`. Find the
- cost when output is 4 units
- average cost when output is 10 units
- marginal cost when output is 3 units
The demand curve of a commodity is given by p = `(50 - x)/5`, find the marginal revenue for any output x and also find marginal revenue at x = 0 and x = 25?
The supply function of certain goods is given by x = a`sqrt("p" - "b")` where p is unit price, a and b are constants with p > b. Find elasticity of supply at p = 2b.
The total cost function for the production of x units of an item is given by C = 10 - 4x3 + 3x4 find the
- average cost function
- marginal cost function
- marginal average cost function.
Find out the indicated elasticity for the following function:
p = `10 e^(- x/3)`, x > 0; ηs
Find the elasticity of supply when the supply function is given by x = 2p2 + 5 at p = 1.
Average fixed cost of the cost function C(x) = 2x3 + 5x2 – 14x + 21 is:
For the cost function C = `1/25 e^(5x)`, the marginal cost is:
Profit P(x) is maximum when
A company begins to earn profit at: