Advertisements
Advertisements
Question
The demand curve of a commodity is given by p = `(50 - x)/5`, find the marginal revenue for any output x and also find marginal revenue at x = 0 and x = 25?
Solution
Given that p = `(50 - x)/5`
Revenue, R = px
`= ((50 - x)/5)`x
`= (50x - x^2)/5`
`= 1/5` (50x – x2)
Marginal Revenue (MR) = `"d"/"dx"`(R)
= `"d"/"dx" 1/5 (50x - x^2)`
= `1/5 "d"/"dx" (50x - x^2)`
= `1/5 (50 - 2x)`
Marginal revenue when x = 0 is, MR = `1/5` (50 – 2 × 0)
`= 1/5 xx 50`
= 10
When x = 25, marginal revenue is MR = `1/5` (50 – 2 × 25)
`= 1/5 (50 - 50)`
= 0
APPEARS IN
RELATED QUESTIONS
The total cost of x units of output of a firm is given by C = `2/3x + 35/2`. Find the
- cost when output is 4 units
- average cost when output is 10 units
- marginal cost when output is 3 units
If the demand law is given by p = `10e^(- x/2)` then find the elasticity of demand.
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = a – bx2
Find the equilibrium price and equilibrium quantity for the following functions.
Demand: x = 100 – 2p and supply: x = 3p – 50.
Find out the indicated elasticity for the following function:
p = xex, x > 0; ηs
For the demand function p x = 100 - 6x2, find the marginal revenue and also show that MR = p`[1 - 1/eta_"d"]`
Average fixed cost of the cost function C(x) = 2x3 + 5x2 – 14x + 21 is:
For the cost function C = `1/25 e^(5x)`, the marginal cost is:
Instantaneous rate of change of y = 2x2 + 5x with respect to x at x = 2 is:
If the average revenue of a certain firm is ₹ 50 and its elasticity of demand is 2, then their marginal revenue is: