Advertisements
Advertisements
Question
For the demand function p x = 100 - 6x2, find the marginal revenue and also show that MR = p`[1 - 1/eta_"d"]`
Solution
Given p = 100 - 6x2
we know that R = px
R = `(100 - 6x^2)x = 100x - 6x^3`
Marginal Revenue (MR) = `"dR"/"dx" = "d"/"dx" (100x - 6x^3)`
LHS = MR = `100 - 18x^2` ....(1)
Differentiating p, with respect to, 'x' we get,
`"dp"/"dx" = - 12 x`
`"dx"/"dp" = (-1)/(12x)`
`therefore eta_"d" = - "p"/x * "dx"/"dp"`
`= (- (100 - 6x^2))/x * ((-1)/(12x))`
`= (100 - 6x^2)/(12x^2)`
`therefore "RHS" = "p"(1-1/(eta_"d"))`
`= (100 - 6x^2)(1 - (12x^2)/(100 - 6x^2))`
RHS = `(cancel(100 - 6x^2))((100 - 6x^2 - 12x^2)/cancel(100 - 6x^2))`
= 100 - 18x2 ...(2)
From (1) and (2), LHS = RHS
`therefore "MR" = "p"(1 - 1/eta_"d")`
APPEARS IN
RELATED QUESTIONS
A firm produces x tonnes of output at a total cost of C(x) = `1/10x^3 - 4x^2 - 20x + 7` find the
- average cost
- average variable cost
- average fixed cost
- marginal cost and
- marginal average cost.
Show that MR = p`[1 - 1/eta_"d"]` for the demand function p = 400 – 2x – 3x2 where p is unit price and x is quantity demand.
Find the values of x, when the marginal function of y = x3 + 10x2 – 48x + 8 is twice the x.
For the demand function x = `25/"p"^4`, 1 ≤ p ≤ 5, determine the elasticity of demand.
The total cost function y for x units is given by y = 3x`((x+7)/(x+5)) + 5`. Show that the marginal cost decreases continuously as the output increases.
Find out the indicated elasticity for the following function:
p = xex, x > 0; ηs
Average fixed cost of the cost function C(x) = 2x3 + 5x2 – 14x + 21 is:
Marginal revenue of the demand function p = 20 – 3x is:
Relationship among MR, AR and ηd is:
The demand function is always