Advertisements
Advertisements
Question
Find the elasticity of supply for the supply function x = 2p2 + 5 when p = 3.
Solution
x = 2p2 + 5
`"dx"/"dp" = 2 xx 2p + 0 = 4p`
Elasticity of supply: ηs = `"p"/x * "dx"/"dp"`
`= "p"/(2"p"^2 + 5) xx 4"p"`
`= "4p"^2/(2"p"^2 + 5)`
When p = 3, elasticity of supply, ηs = `(4 xx 3^2)/(2(3)^2 + 5)`
`= (4 xx 9)/(18 + 5)`
`= 36/23`
APPEARS IN
RELATED QUESTIONS
Show that MR = p`[1 - 1/eta_"d"]` for the demand function p = 400 – 2x – 3x2 where p is unit price and x is quantity demand.
For the demand function p = 550 – 3x – 6x2 where x is quantity demand and p is unit price. Show that MR =
The demand function of a commodity is p = `200 - x/100` and its cost is C = 40x + 120 where p is a unit price in rupees and x is the number of units produced and sold. Determine
- profit function
- average profit at an output of 10 units
- marginal profit at an output of 10 units and
- marginal average profit at an output of 10 units.
Find the price elasticity of demand for the demand function x = 10 – p where x is the demand p is the price. Examine whether the demand is elastic, inelastic, or unit elastic at p = 6.
Find the equilibrium price and equilibrium quantity for the following functions.
Demand: x = 100 – 2p and supply: x = 3p – 50.
The demand and cost functions of a firm are x = 6000 – 30p and C = 72000 + 60x respectively. Find the level of output and price at which the profit is maximum.
Find out the indicated elasticity for the following function:
p = xex, x > 0; ηs
Average fixed cost of the cost function C(x) = 2x3 + 5x2 – 14x + 21 is:
If the demand function is said to be inelastic, then:
Relationship among MR, AR and ηd is: