Advertisements
Advertisements
प्रश्न
Find the elasticity of supply for the supply function x = 2p2 + 5 when p = 3.
उत्तर
x = 2p2 + 5
`"dx"/"dp" = 2 xx 2p + 0 = 4p`
Elasticity of supply: ηs = `"p"/x * "dx"/"dp"`
`= "p"/(2"p"^2 + 5) xx 4"p"`
`= "4p"^2/(2"p"^2 + 5)`
When p = 3, elasticity of supply, ηs = `(4 xx 3^2)/(2(3)^2 + 5)`
`= (4 xx 9)/(18 + 5)`
`= 36/23`
APPEARS IN
संबंधित प्रश्न
If the demand law is given by p = `10e^(- x/2)` then find the elasticity of demand.
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = (a – bx)2
The cost function of a firm is C = x3 – 12x2 + 48x. Find the level of output (x > 0) at which average cost is minimum.
The elasticity of demand for the demand function x = `1/"p"` is:
Relationship among MR, AR and ηd is:
For the cost function C = `1/25 e^(5x)`, the marginal cost is:
If the average revenue of a certain firm is ₹ 50 and its elasticity of demand is 2, then their marginal revenue is:
Profit P(x) is maximum when
Average cost is minimum when:
A company begins to earn profit at: