Advertisements
Advertisements
Question
Find the equilibrium price and equilibrium quantity for the following functions.
Demand: x = 100 – 2p and supply: x = 3p – 50.
Solution
Demand x = 100 – 2p
Supply x = 3p – 50
At equilibrium, demand = supply
100 – 2p = 3p – 50
- 2p – 3p = -100 – 50
- 5p = -150
p = `(-150)/(-5) = 30`
∴ Equilibrium price pE = 30
Supply, x = 3p – 50
Put p = 30, we get
x = 3(30) – 50 = 90 – 50 = 40
∴ Equilibrium quantity xE = 40
APPEARS IN
RELATED QUESTIONS
A firm produces x tonnes of output at a total cost of C(x) = `1/10x^3 - 4x^2 - 20x + 7` find the
- average cost
- average variable cost
- average fixed cost
- marginal cost and
- marginal average cost.
Revenue function ‘R’ and cost function ‘C’ are R = 14x – x2 and C = x(x2 – 2). Find the
- average cost
- marginal cost
- average revenue and
- marginal revenue.
Show that MR = p`[1 - 1/eta_"d"]` for the demand function p = 400 – 2x – 3x2 where p is unit price and x is quantity demand.
For the demand function x = `25/"p"^4`, 1 ≤ p ≤ 5, determine the elasticity of demand.
The demand function of a commodity is p = `200 - x/100` and its cost is C = 40x + 120 where p is a unit price in rupees and x is the number of units produced and sold. Determine
- profit function
- average profit at an output of 10 units
- marginal profit at an output of 10 units and
- marginal average profit at an output of 10 units.
The cost function of a firm is C = x3 – 12x2 + 48x. Find the level of output (x > 0) at which average cost is minimum.
Find the elasticity of supply when the supply function is given by x = 2p2 + 5 at p = 1.
The elasticity of demand for the demand function x = `1/"p"` is:
Relationship among MR, AR and ηd is:
A company begins to earn profit at: