Advertisements
Advertisements
Question
A company begins to earn profit at:
Options
Maximum point
Breakeven point
Stationary point
Even point
Solution
Breakeven point
APPEARS IN
RELATED QUESTIONS
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = a – bx2
Find the elasticity of supply for the supply function x = 2p2 + 5 when p = 3.
The supply function of certain goods is given by x = a`sqrt("p" - "b")` where p is unit price, a and b are constants with p > b. Find elasticity of supply at p = 2b.
For the demand function p = 550 – 3x – 6x2 where x is quantity demand and p is unit price. Show that MR =
Find the values of x, when the marginal function of y = x3 + 10x2 – 48x + 8 is twice the x.
The total cost function y for x units is given by y = 3x`((x+7)/(x+5)) + 5`. Show that the marginal cost decreases continuously as the output increases.
Find the price elasticity of demand for the demand function x = 10 – p where x is the demand p is the price. Examine whether the demand is elastic, inelastic, or unit elastic at p = 6.
For the demand function p x = 100 - 6x2, find the marginal revenue and also show that MR = p`[1 - 1/eta_"d"]`
Marginal revenue of the demand function p = 20 – 3x is:
If demand and the cost function of a firm are p = 2 – x and C = -2x2 + 2x + 7 then its profit function is: