Advertisements
Advertisements
Question
The supply function of certain goods is given by x = a`sqrt("p" - "b")` where p is unit price, a and b are constants with p > b. Find elasticity of supply at p = 2b.
Solution
Given that x = a`sqrt("p" - "b")`
Elasticity of supply: ηs = `"p"/x * "dx"/"dp"`
x = a`sqrt("p" - "b")`
`"dx"/"dp" = "a"(1/(2sqrt "p - b"))`
ηs = `"p"/x * "dx"/"dp"`
`= "p"/("a"sqrt("p" - "b")) xx "a" xx 1/(2sqrt("p" - "b"))`
`= "p"/(2("p - b"))`
Hint for differentiation
Use y = `sqrtx`
`"dy"/"dx" = 1/(2sqrtx)`
(or) x = `"a"sqrt("p - b")`
x = `"a"("p - b")^(1/2)`
`"dx"/"dp" = "a" * 1/2 ("p - b")^(1/2 - 1)`
`= "a"/2 ("p - b")^(- 1/2)`
`= "a"/2 1/(sqrt ("p - b"))`
When p = 2b, Elasticity of supply: ηs = `"2b"/(2("2b" - "b")) = "2b"/"2b" = 1`
APPEARS IN
RELATED QUESTIONS
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = a – bx2
Find the elasticity of supply for the supply function x = 2p2 + 5 when p = 3.
The total cost function y for x units is given by y = 3x`((x+7)/(x+5)) + 5`. Show that the marginal cost decreases continuously as the output increases.
The total cost function for the production of x units of an item is given by C = 10 - 4x3 + 3x4 find the
- average cost function
- marginal cost function
- marginal average cost function.
Find out the indicated elasticity for the following function:
p = xex, x > 0; ηs
For the demand function p x = 100 - 6x2, find the marginal revenue and also show that MR = p`[1 - 1/eta_"d"]`
Marginal revenue of the demand function p = 20 – 3x is:
If demand and the cost function of a firm are p = 2 – x and C = -2x2 + 2x + 7 then its profit function is:
Profit P(x) is maximum when
A company begins to earn profit at: