Advertisements
Advertisements
Question
The cost function of a firm is C = x3 – 12x2 + 48x. Find the level of output (x > 0) at which average cost is minimum.
Solution
The cost function is C = x3 – 12x2 + 48x
Average cost is minimum,
When Average Cost (AC) = Marginal Cost (MC)
Cost function, C = x3 – 12x2 + 48x
Average Cost, AC = `(x^3 - 12x^2 + 48x)/x` = x2 – 12x + 48
Marginal Cost (MC) = `"dC"/"dx"`
`= "d"/"dx" (x^3 - 12x^2 + 48x)`
= 3x2 – 24x + 48
But AC = MC
x2 – 12x + 48 = 3x2 – 24x + 48
x2 – 3x2 – 12x + 24x = 0
-2x2 + 12x = 0
Divide by -2 we get, x2 – 6x = 0
x (x – 6) = 0
x = 0 (or) x – 6 = 0
x = 0 (or) x = 6
But x > 0
∴ x = 6
Output = 6 units
APPEARS IN
RELATED QUESTIONS
If the demand law is given by p = `10e^(- x/2)` then find the elasticity of demand.
The supply function of certain goods is given by x = a`sqrt("p" - "b")` where p is unit price, a and b are constants with p > b. Find elasticity of supply at p = 2b.
The demand function of a commodity is p = `200 - x/100` and its cost is C = 40x + 120 where p is a unit price in rupees and x is the number of units produced and sold. Determine
- profit function
- average profit at an output of 10 units
- marginal profit at an output of 10 units and
- marginal average profit at an output of 10 units.
The demand and cost functions of a firm are x = 6000 – 30p and C = 72000 + 60x respectively. Find the level of output and price at which the profit is maximum.
Find out the indicated elasticity for the following function:
p = `10 e^(- x/3)`, x > 0; ηs
If the demand function is said to be inelastic, then:
The elasticity of demand for the demand function x = `1/"p"` is:
Relationship among MR, AR and ηd is:
For the cost function C = `1/25 e^(5x)`, the marginal cost is:
A company begins to earn profit at: