Advertisements
Advertisements
Question
The total cost of x units of output of a firm is given by C = `2/3x + 35/2`. Find the
- cost when output is 4 units
- average cost when output is 10 units
- marginal cost when output is 3 units
Solution
C = `2/3x + 35/2`
i.e., C(x) = `2/3 x + 35/2`
(i) Cost when output is 4 units, i.e., to find when x = 4, C = ?
C(4) = `2/3(4) + 35/2`
C = `8/3 + 35/2`
C = `(8 xx 2 + 35 xx 3)/(3 xx 2) = (16 + 105)/6`
= ₹ `121/6`
(ii) Average cost when output is 10 units, i.e., to find when x = 10, AC = ?
C = `2/3 x + 35/2`
Average Cost (AC) = `"Total cost"/"Output" = ("C"(x))/x = ("f"(x) + k)/x`
`= (2/3 x + 35/2)/x = 2/3 x/x + 35/2 1/x`
AC = `2/3 + 35/2 xx 1/x`
When x = 10, AC = `2/3 + 35/2 xx 1/10`
`= 2/3 + 7/2 xx 1/2 = 2/3 + 7/4`
`= (2 xx 4 + 7xx3)/(3 xx 4)`
`= (8 + 21)/12`
`= 29/12`
Average cost when output is 10 units is ₹ `29/12`
(iii) Marginal cost when output is 3 units
C = `2/3x + 35/2`
Marginal Cost (MC) = `"d"/"dx"`(C)
`= "d"/"dx" (2/3x + 35/2)`
`= 2/3 "d"/"dx" (x) + "d"/"dx" (35/2)`
`= 2/3 (1) + 0 = 2/3`
Marginal cost when output is 3 units will be ₹ `2/3`
APPEARS IN
RELATED QUESTIONS
If the demand law is given by p = `10e^(- x/2)` then find the elasticity of demand.
The supply function of certain goods is given by x = a`sqrt("p" - "b")` where p is unit price, a and b are constants with p > b. Find elasticity of supply at p = 2b.
Find the equilibrium price and equilibrium quantity for the following functions.
Demand: x = 100 – 2p and supply: x = 3p – 50.
The cost function of a firm is C = x3 – 12x2 + 48x. Find the level of output (x > 0) at which average cost is minimum.
Find out the indicated elasticity for the following function:
p = `10 e^(- x/3)`, x > 0; ηs
Marginal revenue of the demand function p = 20 – 3x is:
The elasticity of demand for the demand function x = `1/"p"` is:
Instantaneous rate of change of y = 2x2 + 5x with respect to x at x = 2 is:
If the average revenue of a certain firm is ₹ 50 and its elasticity of demand is 2, then their marginal revenue is:
Profit P(x) is maximum when