Advertisements
Advertisements
प्रश्न
The total cost function y for x units is given by y = 3x`((x+7)/(x+5)) + 5`. Show that the marginal cost decreases continuously as the output increases.
उत्तर
The total cost function, y = `3x((x+7)/(x+5)) + 5`
To prove the marginal cost decreases continuously as the output increase we should prove `"dy"/"dx"` is positive.
y = `3x((x+7)/(x+5)) + 5`
`= 3x (((x + 5) + 2)/(x + 5)) + 5`
`= 3x ((x + 5)/(x + 5) + 2/(x + 5)) + 5`
y = `3x(1 + 2/(x+ 5)) + 5`
y = `3 (x + (2x)/(x + 5)) + 5`
`"dy"/"dx" = 3 "d"/"dx" [x + (2x)/(x + 5)] + "d"/"dx" (5)`
`= 3 [1 + 2 "d"/"dx" (x/(x + 5))] + 0`
`= 3 [1 + 2(((x + 5)1 - x(1))/(x+5)^2)]`
`= 3 [1 + 2((x + 5 - x)/(x+5)^2)]`
`= 3 [1 + 2(5/(x + 5)^2)]`
`= 3 [1 + 10/(x+5)^2]`, which is positive.
∴ The marginal cost decreases continuously of the output increases.
APPEARS IN
संबंधित प्रश्न
The total cost of x units of output of a firm is given by C = `2/3x + 35/2`. Find the
- cost when output is 4 units
- average cost when output is 10 units
- marginal cost when output is 3 units
Show that MR = p`[1 - 1/eta_"d"]` for the demand function p = 400 – 2x – 3x2 where p is unit price and x is quantity demand.
Find the values of x, when the marginal function of y = x3 + 10x2 – 48x + 8 is twice the x.
The demand function of a commodity is p = `200 - x/100` and its cost is C = 40x + 120 where p is a unit price in rupees and x is the number of units produced and sold. Determine
- profit function
- average profit at an output of 10 units
- marginal profit at an output of 10 units and
- marginal average profit at an output of 10 units.
The demand and cost functions of a firm are x = 6000 – 30p and C = 72000 + 60x respectively. Find the level of output and price at which the profit is maximum.
The total cost function for the production of x units of an item is given by C = 10 - 4x3 + 3x4 find the
- average cost function
- marginal cost function
- marginal average cost function.
Find out the indicated elasticity for the following function:
p = `10 e^(- x/3)`, x > 0; ηs
Marginal revenue of the demand function p = 20 – 3x is:
Relationship among MR, AR and ηd is:
The demand function is always