हिंदी

Find the equation of a circle concentric with the circle x2 + y2 – 6x + 12y + 15 = 0 and has double of its area. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a circle concentric with the circle x2 + y2 – 6x + 12y + 15 = 0 and has double of its area.

योग

उत्तर

Given equation of the circle is x2 + y2 – 6x + 12y + 15 = 0  ......(i)

Centre = `(-g, -f) = (3, 6)`   .......`[(because 2g = -6 ⇒ g = - 3),(2f = 12 ⇒ f = 6)]`

Since the circle is concentric with the given circle

∴ Centre = (3, – 6)

Now let the radius of the circle is r

∴ r = `sqrt(g^2 + f^2 - c)`

= `sqrt(9 + 36 - 15)`

= `sqrt(30)`

Area of the given circle (i) = πr2 = 30π sq.unit

Area of the required circle = 2 × 30π = 60π sq.unit

If r1 be the radius of the required circle

πr12 = 60π

⇒ r12 = 60

So, the required equations of the circle is

(x – 3)2 + (y + 6)2 = 60

⇒ x2 + 9 – 6x + y2 + 36 + 12y – 60 = 0

⇒ x2 + y2 – 6x + 12y – 15 = 0

Hence, the required equation is x2 + y2 – 6x + 12y – 15 = 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise [पृष्ठ २०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise | Q 10 | पृष्ठ २०२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×