हिंदी

If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity. - Mathematics

Advertisements
Advertisements

प्रश्न

If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity.

योग

उत्तर

Let the equation of an ellipse is `x^2/a^2 + y^2/b^2` = 1

Length of major axis = 2a

Length of minor axis = 2b

And the length of latus rectum = `(2b^2)/a`

We have `(2b^2)/a = (2b)/2`

⇒ b = `a/2`

Now b2 = a2(1 – e2), where e is the eccentricity

⇒ b2 = 4b2(1 – e2)

⇒ 1 = 4(1 – e2)

⇒ 1 – e2 = `1/4`

⇒ e2 = `1 - 1/4`

⇒ e2 = `3/4`

∴ e = `+- sqrt(3)/2`

So, e = `sqrt(3)/2`    ......[∵ e is not (–)]

Hence, the required value of eccentricity is `sqrt(3)/2`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise [पृष्ठ २०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise | Q 11 | पृष्ठ २०२

संबंधित प्रश्न

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

`x^2/16 - y^2/9 = 1`


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

`y^2/9 - x^2/27 = 1`


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

9y2 – 4x2 = 36


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

5y2 – 9x2 = 36


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

49y2 – 16x2 = 784


Find the equation of the hyperbola satisfying the given conditions:

Vertices (±2, 0), foci (±3, 0)


Find the centre, eccentricity, foci and directrice of the hyperbola .

x2 − 3y2 − 2x = 8.


Find the eccentricity of the hyperbola, the length of whose conjugate axis is \[\frac{3}{4}\] of the length of transverse axis.


Write the eccentricity of the hyperbola 9x2 − 16y2 = 144.


Write the equation of the hyperbola of eccentricity \[\sqrt{2}\],  if it is known that the distance between its foci is 16.


If the foci of the ellipse \[\frac{x^2}{16} + \frac{y^2}{b^2} = 1\] and the hyperbola \[\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}\] coincide, write the value of b2.


If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\]

and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] then write the value of 2 e12 + e22.


If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\] and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] , then the relation between e1 and e2 is


The equation of the conic with focus at (1, 1) directrix along x − y + 1 = 0 and eccentricity \[\sqrt{2}\] is


The eccentricity of the conic 9x2 − 16y2 = 144 is 


The eccentricity of the hyperbola whose latus-rectum is half of its transverse axis, is 


The eccentricity of the hyperbola x2 − 4y2 = 1 is 


If e1 is the eccentricity of the conic 9x2 + 4y2 = 36 and e2 is the eccentricity of the conic 9x2 − 4y2 = 36, then


The eccentricity the hyperbola \[x = \frac{a}{2}\left( t + \frac{1}{t} \right), y = \frac{a}{2}\left( t - \frac{1}{t} \right)\] is


The locus of the point of intersection of the lines \[\sqrt{3}x - y - 4\sqrt{3}\lambda = 0 \text { and } \sqrt{3}\lambda  + \lambda - 4\sqrt{3} = 0\]  is a hyperbola of eccentricity


Given the ellipse with equation 9x2 + 25y2 = 225, find the eccentricity and foci.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×