हिंदी

If e1 is the eccentricity of the conic 9x2 + 4y2 = 36 and e2 is the eccentricity of the conic 9x2 − 4y2 = 36, then - Mathematics

Advertisements
Advertisements

प्रश्न

If e1 is the eccentricity of the conic 9x2 + 4y2 = 36 and e2 is the eccentricity of the conic 9x2 − 4y2 = 36, then

विकल्प

  • e12 − e22 = 2

  • 2 < e22 − e12 < 3

  • e22 − e12 = 2

  • e22 − e12 > 3

MCQ

उत्तर

2 < e22 − e12 < 3
The conic ​ 

\[9 x^2 + 4 y^2 = 36\]  can rewritten in the following way:

\[\frac{9 x^2}{36} + \frac{4 y^2}{36} = 1\]

\[ \Rightarrow \frac{x^2}{4} + \frac{y^2}{9} = 1\]

This is the standard equation of an ellipse.

\[\therefore b^2 = a^2 \left( 1 - e_1 \right)^2 \]

\[ \Rightarrow 9 = 4 \left( 1 - e_1 \right)^2 \]

\[ \Rightarrow \left( e_1 \right)^2 = \frac{- 5}{4}\]

The conic ​

\[9 x^2 - 4 y^2 = 36\]  can rewritten in the following way:

\[\frac{9 x^2}{36} - \frac{4 y^2}{36} = 1\]

\[ \Rightarrow \frac{x^2}{4} - \frac{y^2}{9} = 1\]

This is the standard equation of a hyperbola.

\[\therefore b^2 = a^2 \left( {e_2}^2 - 1 \right)\]

\[ \Rightarrow 9 = 4\left( {e_2}^2 - 1 \right)\]

\[ \Rightarrow \left( e_2 \right)^2 = \frac{13}{4}\]

\[\therefore {e_2}^2 - {e_1}^2 = \frac{13}{4} + \frac{5}{4} = 2 . 5\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Hyperbola - Exercise 27.3 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 27 Hyperbola
Exercise 27.3 | Q 12 | पृष्ठ १९

संबंधित प्रश्न

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

`x^2/16 - y^2/9 = 1`


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

`y^2/9 - x^2/27 = 1`


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

9y2 – 4x2 = 36


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

16x2 – 9y2 = 576


Find the equation of the hyperbola satisfying the given conditions:

Vertices (±2, 0), foci (±3, 0)


Find the centre, eccentricity, foci and directrice of the hyperbola .

16x2 − 9y2 + 32x + 36y − 164 = 0


Find the centre, eccentricity, foci and directrice of the hyperbola .

x2 − 3y2 − 2x = 8.


Find the eccentricity of the hyperbola, the length of whose conjugate axis is \[\frac{3}{4}\] of the length of transverse axis.


If the distance between the foci of a hyperbola is 16 and its ecentricity is \[\sqrt{2}\],then obtain its equation.


Write the coordinates of the foci of the hyperbola 9x2 − 16y2 = 144.


Write the equation of the hyperbola of eccentricity \[\sqrt{2}\],  if it is known that the distance between its foci is 16.


If the foci of the ellipse \[\frac{x^2}{16} + \frac{y^2}{b^2} = 1\] and the hyperbola \[\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}\] coincide, write the value of b2.


If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\] and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] , then the relation between e1 and e2 is


The equation of the conic with focus at (1, 1) directrix along x − y + 1 = 0 and eccentricity \[\sqrt{2}\] is


The eccentricity of the hyperbola whose latus-rectum is half of its transverse axis, is 


The distance between the foci of a hyperbola is 16 and its eccentricity is \[\sqrt{2}\], then equation of the hyperbola is


If the eccentricity of the hyperbola x2 − y2 sec2α = 5 is \[\sqrt{3}\]  times the eccentricity of the ellipse x2 sec2 α + y2 = 25, then α =


The eccentricity the hyperbola \[x = \frac{a}{2}\left( t + \frac{1}{t} \right), y = \frac{a}{2}\left( t - \frac{1}{t} \right)\] is


The locus of the point of intersection of the lines \[\sqrt{3}x - y - 4\sqrt{3}\lambda = 0 \text { and } \sqrt{3}\lambda  + \lambda - 4\sqrt{3} = 0\]  is a hyperbola of eccentricity


If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity.


Given the ellipse with equation 9x2 + 25y2 = 225, find the eccentricity and foci.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×