हिंदी

If the Distance Between the Foci of a Hyperbola is 16 and Its Ecentricity is √ 2 ,Then Obtain Its Equation. - Mathematics

Advertisements
Advertisements

प्रश्न

If the distance between the foci of a hyperbola is 16 and its ecentricity is \[\sqrt{2}\],then obtain its equation.

संक्षेप में उत्तर

उत्तर

We have

\[2ae = 16\]

\[ \Rightarrow ae = 8\]

\[ \Rightarrow a = \frac{8}{\sqrt{2}} = 4\sqrt{2}\]

\[ \Rightarrow a^2 = 32\]

Now,

\[\left( ae \right)^2 = a^2 + b^2 \]

\[ \Rightarrow \left( 8 \right)^2 = 32 + b^2 \]

\[ \Rightarrow 64 - 32 = b^2 \]

\[ \Rightarrow b^2 = 32\]

Therefore, the equation of the hyperbola is given by

\[\frac{x^2}{32} - \frac{y^2}{32} = 1\]

\[ \Rightarrow x^2 - y^2 = 32\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Hyperbola - Exercise 27.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 27 Hyperbola
Exercise 27.1 | Q 12 | पृष्ठ १४

संबंधित प्रश्न

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

`x^2/16 - y^2/9 = 1`


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

`y^2/9 - x^2/27 = 1`


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

9y2 – 4x2 = 36


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

5y2 – 9x2 = 36


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

49y2 – 16x2 = 784


Find the equation of the hyperbola satisfying the given conditions:

Vertices (±2, 0), foci (±3, 0)


Find the centre, eccentricity, foci and directrice of the hyperbola.

 x2 − y2 + 4x = 0


Find the eccentricity of the hyperbola, the length of whose conjugate axis is \[\frac{3}{4}\] of the length of transverse axis.


Write the eccentricity of the hyperbola 9x2 − 16y2 = 144.


Write the equation of the hyperbola of eccentricity \[\sqrt{2}\],  if it is known that the distance between its foci is 16.


If the foci of the ellipse \[\frac{x^2}{16} + \frac{y^2}{b^2} = 1\] and the hyperbola \[\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}\] coincide, write the value of b2.


If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\]

and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] then write the value of 2 e12 + e22.


If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\] and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] , then the relation between e1 and e2 is


The equation of the conic with focus at (1, 1) directrix along x − y + 1 = 0 and eccentricity \[\sqrt{2}\] is


The eccentricity of the conic 9x2 − 16y2 = 144 is 


The eccentricity of the hyperbola whose latus-rectum is half of its transverse axis, is 


The eccentricity of the hyperbola x2 − 4y2 = 1 is 


The distance between the foci of a hyperbola is 16 and its eccentricity is \[\sqrt{2}\], then equation of the hyperbola is


If e1 is the eccentricity of the conic 9x2 + 4y2 = 36 and e2 is the eccentricity of the conic 9x2 − 4y2 = 36, then


The locus of the point of intersection of the lines \[\sqrt{3}x - y - 4\sqrt{3}\lambda = 0 \text { and } \sqrt{3}\lambda  + \lambda - 4\sqrt{3} = 0\]  is a hyperbola of eccentricity


If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity.


Given the ellipse with equation 9x2 + 25y2 = 225, find the eccentricity and foci.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×