English

If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity. - Mathematics

Advertisements
Advertisements

Question

If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity.

Sum

Solution

Let the equation of an ellipse is `x^2/a^2 + y^2/b^2` = 1

Length of major axis = 2a

Length of minor axis = 2b

And the length of latus rectum = `(2b^2)/a`

We have `(2b^2)/a = (2b)/2`

⇒ b = `a/2`

Now b2 = a2(1 – e2), where e is the eccentricity

⇒ b2 = 4b2(1 – e2)

⇒ 1 = 4(1 – e2)

⇒ 1 – e2 = `1/4`

⇒ e2 = `1 - 1/4`

⇒ e2 = `3/4`

∴ e = `+- sqrt(3)/2`

So, e = `sqrt(3)/2`    ......[∵ e is not (–)]

Hence, the required value of eccentricity is `sqrt(3)/2`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Exercise [Page 202]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 11 Conic Sections
Exercise | Q 11 | Page 202

RELATED QUESTIONS

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

`x^2/16 - y^2/9 = 1`


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

`y^2/9 - x^2/27 = 1`


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

16x2 – 9y2 = 576


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

5y2 – 9x2 = 36


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

49y2 – 16x2 = 784


Find the equation of the hyperbola satisfying the given conditions:

Vertices (±2, 0), foci (±3, 0)


Find the centre, eccentricity, foci and directrice of the hyperbola .

16x2 − 9y2 + 32x + 36y − 164 = 0


Find the centre, eccentricity, foci and directrice of the hyperbola .

x2 − 3y2 − 2x = 8.


If the distance between the foci of a hyperbola is 16 and its ecentricity is \[\sqrt{2}\],then obtain its equation.


Write the eccentricity of the hyperbola 9x2 − 16y2 = 144.


Write the coordinates of the foci of the hyperbola 9x2 − 16y2 = 144.


Write the equation of the hyperbola of eccentricity \[\sqrt{2}\],  if it is known that the distance between its foci is 16.


If the foci of the ellipse \[\frac{x^2}{16} + \frac{y^2}{b^2} = 1\] and the hyperbola \[\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}\] coincide, write the value of b2.


If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\]

and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] then write the value of 2 e12 + e22.


If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\] and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] , then the relation between e1 and e2 is


The equation of the conic with focus at (1, 1) directrix along x − y + 1 = 0 and eccentricity \[\sqrt{2}\] is


The eccentricity of the conic 9x2 − 16y2 = 144 is 


The eccentricity of the hyperbola whose latus-rectum is half of its transverse axis, is 


The distance between the foci of a hyperbola is 16 and its eccentricity is \[\sqrt{2}\], then equation of the hyperbola is


If the eccentricity of the hyperbola x2 − y2 sec2α = 5 is \[\sqrt{3}\]  times the eccentricity of the ellipse x2 sec2 α + y2 = 25, then α =


The eccentricity the hyperbola \[x = \frac{a}{2}\left( t + \frac{1}{t} \right), y = \frac{a}{2}\left( t - \frac{1}{t} \right)\] is


The locus of the point of intersection of the lines \[\sqrt{3}x - y - 4\sqrt{3}\lambda = 0 \text { and } \sqrt{3}\lambda  + \lambda - 4\sqrt{3} = 0\]  is a hyperbola of eccentricity


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×