Advertisements
Advertisements
Question
The eccentricity the hyperbola \[x = \frac{a}{2}\left( t + \frac{1}{t} \right), y = \frac{a}{2}\left( t - \frac{1}{t} \right)\] is
Options
\[\sqrt{2}\]
\[\sqrt{3}\]
\[2\sqrt{3}\]
\[3\sqrt{2}\]
Solution
\[\sqrt{2}\]
We eliminate t in \[x = \frac{a}{2}\left( t + \frac{1}{t} \right), y = \frac{a}{2}\left( t - \frac{1}{t} \right)\].
On squaring both the sides in the equations \[x = \frac{a}{2}\left( t + \frac{1}{t} \right), y = \frac{a}{2}\left( t - \frac{1}{t} \right)\] , we get:
\[\frac{4 x^2}{a^2} = t^2 + \frac{1}{t^2} + 2\]
\[ \Rightarrow \frac{4 x^2}{a^2} - 2 = t^2 + \frac{1}{t^2} . . . \left( 1 \right)\]
\[\text { Also }, \frac{4 y^2}{a^2} = t^2 + \frac{1}{t^2} - 2\]
\[ \Rightarrow \frac{4 y^2}{a^2} + 2 = t^2 + \frac{1}{t^2} . . . \left( 2 \right)\]
From (1) and (2), we get:
\[\frac{4 x^2}{a^2} - \frac{4 y^2}{a^2} = 4\]
\[ \Rightarrow \frac{x^2}{a^2} - \frac{y^2}{a^2} = 1\]
This is the standard equation of a hyperbola, where \[a^2 = b^2\].
Eccentricity of the hyperbola,
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
`x^2/16 - y^2/9 = 1`
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
`y^2/9 - x^2/27 = 1`
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
9y2 – 4x2 = 36
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
16x2 – 9y2 = 576
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
5y2 – 9x2 = 36
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
49y2 – 16x2 = 784
Find the centre, eccentricity, foci and directrice of the hyperbola .
16x2 − 9y2 + 32x + 36y − 164 = 0
Find the centre, eccentricity, foci and directrice of the hyperbola.
x2 − y2 + 4x = 0
Find the centre, eccentricity, foci and directrice of the hyperbola .
x2 − 3y2 − 2x = 8.
Find the eccentricity of the hyperbola, the length of whose conjugate axis is \[\frac{3}{4}\] of the length of transverse axis.
If the distance between the foci of a hyperbola is 16 and its ecentricity is \[\sqrt{2}\],then obtain its equation.
Write the coordinates of the foci of the hyperbola 9x2 − 16y2 = 144.
Write the equation of the hyperbola of eccentricity \[\sqrt{2}\], if it is known that the distance between its foci is 16.
If the foci of the ellipse \[\frac{x^2}{16} + \frac{y^2}{b^2} = 1\] and the hyperbola \[\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}\] coincide, write the value of b2.
The equation of the conic with focus at (1, −1) directrix along x − y + 1 = 0 and eccentricity \[\sqrt{2}\] is
The eccentricity of the conic 9x2 − 16y2 = 144 is
The distance between the foci of a hyperbola is 16 and its eccentricity is \[\sqrt{2}\], then equation of the hyperbola is
If e1 is the eccentricity of the conic 9x2 + 4y2 = 36 and e2 is the eccentricity of the conic 9x2 − 4y2 = 36, then
The locus of the point of intersection of the lines \[\sqrt{3}x - y - 4\sqrt{3}\lambda = 0 \text { and } \sqrt{3}\lambda + \lambda - 4\sqrt{3} = 0\] is a hyperbola of eccentricity
Given the ellipse with equation 9x2 + 25y2 = 225, find the eccentricity and foci.