English

Write the Equation of the Hyperbola of Eccentricity √ 2 , If It is Known that the Distance Between Its Foci is 16. - Mathematics

Advertisements
Advertisements

Question

Write the equation of the hyperbola of eccentricity \[\sqrt{2}\],  if it is known that the distance between its foci is 16.

Answer in Brief

Solution

The foci of the hyperbola are of the form  \[\left( ae, 0 \right)\] and  \[\left( - ae, 0 \right)\].

Distance between the foci = \[\sqrt{\left( ae - ( - ae \right)^2 + 0^{{}^2}}\]

                                           \[ = \sqrt{\left( 2ae \right)^{{}^2}}\]

                                            \[ = 2ae\]

Distance between the foci is 16 and eccentricity of the hyperbola is  \[\sqrt{2}\].

\[\therefore 2ae = 16\]

\[ \Rightarrow 2\sqrt{2}a = 16\]

\[ \Rightarrow a = 4\sqrt{2}\]

Now, \[b^2 = a^2 ( e^2 - 1)\]

\[ \Rightarrow b^2 = \left( 4\sqrt{2} \right)^2 ((\sqrt{2} )^2 - 1)\]

\[ \Rightarrow b^2 = 32\]

Equation of the hyperbola is given below:

\[\frac{x^2}{\left( 4\sqrt{2} \right)^2} - \frac{y^2}{32} = 1\]

\[ \Rightarrow \frac{x^2}{32} - \frac{y^2}{32} = 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Hyperbola - Exercise 27.2 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 27 Hyperbola
Exercise 27.2 | Q 4 | Page 18

RELATED QUESTIONS

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

`x^2/16 - y^2/9 = 1`


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

`y^2/9 - x^2/27 = 1`


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

9y2 – 4x2 = 36


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

16x2 – 9y2 = 576


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

5y2 – 9x2 = 36


Find the equation of the hyperbola satisfying the given conditions:

Vertices (±2, 0), foci (±3, 0)


Find the centre, eccentricity, foci and directrice of the hyperbola.

 x2 − y2 + 4x = 0


Find the centre, eccentricity, foci and directrice of the hyperbola .

x2 − 3y2 − 2x = 8.


If the distance between the foci of a hyperbola is 16 and its ecentricity is \[\sqrt{2}\],then obtain its equation.


Write the eccentricity of the hyperbola 9x2 − 16y2 = 144.


If the foci of the ellipse \[\frac{x^2}{16} + \frac{y^2}{b^2} = 1\] and the hyperbola \[\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}\] coincide, write the value of b2.


If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\]

and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] then write the value of 2 e12 + e22.


The equation of the conic with focus at (1, 1) directrix along x − y + 1 = 0 and eccentricity \[\sqrt{2}\] is


The eccentricity of the conic 9x2 − 16y2 = 144 is 


The eccentricity of the hyperbola x2 − 4y2 = 1 is 


The distance between the foci of a hyperbola is 16 and its eccentricity is \[\sqrt{2}\], then equation of the hyperbola is


If e1 is the eccentricity of the conic 9x2 + 4y2 = 36 and e2 is the eccentricity of the conic 9x2 − 4y2 = 36, then


If the eccentricity of the hyperbola x2 − y2 sec2α = 5 is \[\sqrt{3}\]  times the eccentricity of the ellipse x2 sec2 α + y2 = 25, then α =


The eccentricity the hyperbola \[x = \frac{a}{2}\left( t + \frac{1}{t} \right), y = \frac{a}{2}\left( t - \frac{1}{t} \right)\] is


The locus of the point of intersection of the lines \[\sqrt{3}x - y - 4\sqrt{3}\lambda = 0 \text { and } \sqrt{3}\lambda  + \lambda - 4\sqrt{3} = 0\]  is a hyperbola of eccentricity


If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity.


Given the ellipse with equation 9x2 + 25y2 = 225, find the eccentricity and foci.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×