Advertisements
Advertisements
Question
Write the equation of the hyperbola of eccentricity \[\sqrt{2}\], if it is known that the distance between its foci is 16.
Solution
The foci of the hyperbola are of the form \[\left( ae, 0 \right)\] and \[\left( - ae, 0 \right)\].
Distance between the foci = \[\sqrt{\left( ae - ( - ae \right)^2 + 0^{{}^2}}\]
\[ = \sqrt{\left( 2ae \right)^{{}^2}}\]
\[ = 2ae\]
Distance between the foci is 16 and eccentricity of the hyperbola is \[\sqrt{2}\].
\[\therefore 2ae = 16\]
\[ \Rightarrow 2\sqrt{2}a = 16\]
\[ \Rightarrow a = 4\sqrt{2}\]
Now, \[b^2 = a^2 ( e^2 - 1)\]
\[ \Rightarrow b^2 = \left( 4\sqrt{2} \right)^2 ((\sqrt{2} )^2 - 1)\]
\[ \Rightarrow b^2 = 32\]
Equation of the hyperbola is given below:
\[\frac{x^2}{\left( 4\sqrt{2} \right)^2} - \frac{y^2}{32} = 1\]
\[ \Rightarrow \frac{x^2}{32} - \frac{y^2}{32} = 1\]
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
`x^2/16 - y^2/9 = 1`
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
`y^2/9 - x^2/27 = 1`
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
9y2 – 4x2 = 36
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
16x2 – 9y2 = 576
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
5y2 – 9x2 = 36
Find the equation of the hyperbola satisfying the given conditions:
Vertices (±2, 0), foci (±3, 0)
Find the centre, eccentricity, foci and directrice of the hyperbola.
x2 − y2 + 4x = 0
Find the centre, eccentricity, foci and directrice of the hyperbola .
x2 − 3y2 − 2x = 8.
If the distance between the foci of a hyperbola is 16 and its ecentricity is \[\sqrt{2}\],then obtain its equation.
Write the eccentricity of the hyperbola 9x2 − 16y2 = 144.
If the foci of the ellipse \[\frac{x^2}{16} + \frac{y^2}{b^2} = 1\] and the hyperbola \[\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}\] coincide, write the value of b2.
If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\]
and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] then write the value of 2 e12 + e22.
The equation of the conic with focus at (1, −1) directrix along x − y + 1 = 0 and eccentricity \[\sqrt{2}\] is
The eccentricity of the conic 9x2 − 16y2 = 144 is
The eccentricity of the hyperbola x2 − 4y2 = 1 is
The distance between the foci of a hyperbola is 16 and its eccentricity is \[\sqrt{2}\], then equation of the hyperbola is
If e1 is the eccentricity of the conic 9x2 + 4y2 = 36 and e2 is the eccentricity of the conic 9x2 − 4y2 = 36, then
If the eccentricity of the hyperbola x2 − y2 sec2α = 5 is \[\sqrt{3}\] times the eccentricity of the ellipse x2 sec2 α + y2 = 25, then α =
The eccentricity the hyperbola \[x = \frac{a}{2}\left( t + \frac{1}{t} \right), y = \frac{a}{2}\left( t - \frac{1}{t} \right)\] is
The locus of the point of intersection of the lines \[\sqrt{3}x - y - 4\sqrt{3}\lambda = 0 \text { and } \sqrt{3}\lambda + \lambda - 4\sqrt{3} = 0\] is a hyperbola of eccentricity
If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity.
Given the ellipse with equation 9x2 + 25y2 = 225, find the eccentricity and foci.