Advertisements
Advertisements
Question
The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is
Options
3 (x − 6)2 − (y −2)2 = 3
(x − 6)2 − 3 (y − 2)2 = 1
(x − 6)2 − 2 (y −2)2 = 1
2 (x − 6)2 − (y − 2)2 = 1
Solution
3 (x − 6)2 − (y −2)2 = 3
The equation of the hyperbola with centre (x0,y0) is given by \[\frac{\left( x - x_0 \right)^2}{a^2} - \frac{\left( y - y_0 \right)^2}{b^2} = 1\]
Focus = \[\left( ae + x_0 , y_0 \right)\]
\[\therefore ae = - 2\]
\[ \Rightarrow a = - 1\]
\[ b^2 = \left( 2 \right)^2 - a^2 \]
\[ \Rightarrow b^2 = \left( - 2 \right)^2 - \left( - 1 \right)^2 \]
\[ \Rightarrow b^2 = 3\]
\[\therefore \frac{\left( x - 6 \right)^2}{1} - \frac{\left( y - 2 \right)^2}{3} = 1\]
\[ \Rightarrow 3 \left( x - 6 \right)^2 - \left( y - 2 \right)^2 = 3\]
APPEARS IN
RELATED QUESTIONS
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±3), foci (0, ±5)
Find the equation of the hyperbola satisfying the given conditions:
Foci (0, ±13), the conjugate axis is of length 24.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.
The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.
Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].
Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
9x2 − 16y2 = 144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
3x2 − y2 = 4
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
2x2 − 3y2 = 5.
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 7 and passes through the point (3, −2).
Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).
Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] .
Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2.
Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).
If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
find the equation of the hyperbola satisfying the given condition:
vertices (± 7, 0), \[e = \frac{4}{3}\]
Find the equation of the hyperbola satisfying the given condition:
foci (0, ± \[\sqrt{10}\], passing through (2, 3).
Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).
Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is
The difference of the focal distances of any point on the hyperbola is equal to
The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)
Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.