Advertisements
Advertisements
Question
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
2x2 − 3y2 = 5.
Solution
Equation of the hyperbola: 2x2 − 3y2 = 5.
This can be rewritten in the following manner:
\[\frac{2 x^2}{5} - \frac{3 y^2}{5} = 1\]
\[ \Rightarrow \frac{x^2}{\frac{5}{2}} - \frac{y^2}{\frac{5}{3}} = 1\]
This is the standard equation of a hyperbola, where
\[\Rightarrow b^2 = a^2 ( e^2 - 1)\]
\[ \Rightarrow \frac{5}{3} = \frac{5}{2}( e^2 - 1)\]
\[ \Rightarrow e^2 - 1 = \frac{2}{3}\]
\[ \Rightarrow e^2 = \frac{5}{3}\]
\[ \Rightarrow e = \sqrt{\frac{5}{3}}\]
Coordinates of the foci are given by \[\left( \pm ae, 0 \right)\], i.e.
\[\left( \pm \frac{5\sqrt{6}}{6}, 0 \right)\].
Equation of the directrices: \[x = \pm \frac{a}{e}\]
\[x = \pm \frac{\sqrt{\frac{5}{2}}}{\sqrt{\frac{5}{3}}}\]
\[ \Rightarrow x = \pm \frac{\sqrt{3}}{\sqrt{2}}\]
\[ \Rightarrow \sqrt{2}x \pm \sqrt{3} = 0\]
\[\Rightarrow \frac{2 \times \left( \frac{5}{3} \right)}{\sqrt{\frac{5}{2}}} = \frac{10}{3}\sqrt{\frac{2}{5}}\]
APPEARS IN
RELATED QUESTIONS
Find the equation of the hyperbola satisfying the given conditions:
Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(0, +- sqrt10)`, passing through (2, 3)
Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].
Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
16x2 − 9y2 = −144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
3x2 − y2 = 4
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 5 and the distance between foci = 13 .
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 7 and passes through the point (3, −2).
Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] .
Find the equation of the hyperbola whose vertices are at (± 6, 0) and one of the directrices is x = 4.
If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.
Find the equation of the hyperbola satisfying the given condition :
vertices (± 2, 0), foci (± 3, 0)
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.
Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.
Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is
The difference of the focal distances of any point on the hyperbola is equal to
The foci of the hyperbola 9x2 − 16y2 = 144 are
The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is
The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is
The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.
If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.
Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.
The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.
The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.
Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.