Advertisements
Advertisements
Question
The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is
Options
\[\frac{(x - 1 )^2}{25/4} - \frac{(y - 4 )^2}{75/4} = 1\]
\[\frac{(x + 1 )^2}{25/4} - \frac{(y + 4 )^2}{75/4} = 1\]
\[\frac{(x - 1 )^2}{75/4} - \frac{(y - 4 )^2}{25/4} = 1\]
none of these
Solution
\[\frac{(x - 1 )^2}{25/4} - \frac{(y - 4 )^2}{75/4} = 1\]
The centre of the hyperbola is the midpoint of the line joining the two foci.
So, the coordinates of the centre are \[\left( \frac{6 - 4}{2}, \frac{4 + 4}{2} \right), i . e . \left( 1, 4 \right) .\]
Let 2a and 2b be the length of the transverse and the conjugate axes, respectively. Also, let e be the eccentricity.
\[\Rightarrow \frac{\left( x - 1 \right)^2}{a^2} - \frac{\left( y - 4 \right)^2}{b^2} = 1\]
Now, distance between the two foci = 2ae
\[2ae = \sqrt{\left( 6 + 4 \right)^2 + \left( 4 - 4 \right)^2}\]
\[ \Rightarrow 2ae = 10\]
\[ \Rightarrow ae = 5\]
\[ \Rightarrow a = \frac{5}{2}\]
\[\text { Also }, b^2 = \left( ae \right)^2 - \left( a \right)^2 \]
\[ \Rightarrow b^2 = 25 - \left( \frac{25}{4} \right)\]
\[ \Rightarrow b^2 = \frac{75}{4}\]
Equation of the hyperbola is given below:
\[\frac{\left( x - 1 \right)^2}{25/4} - \frac{\left( y - 4 \right)^2}{75/4} = 1\]
APPEARS IN
RELATED QUESTIONS
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±3), foci (0, ±5)
Find the equation of the hyperbola satisfying the given conditions:
Foci (±5, 0), the transverse axis is of length 8.
Find the equation of the hyperbola satisfying the given conditions:
Foci (0, ±13), the conjugate axis is of length 24.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.
Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].
Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
9x2 − 16y2 = 144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
16x2 − 9y2 = −144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
3x2 − y2 = 4
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
2x2 − 3y2 = 5.
Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).
Find the equation of the hyperbola satisfying the given condition :
vertices (± 2, 0), foci (± 3, 0)
Find the equation of the hyperbola satisfying the given condition :
vertices (0, ± 5), foci (0, ± 8)
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
find the equation of the hyperbola satisfying the given condition:
vertices (± 7, 0), \[e = \frac{4}{3}\]
Find the equation of the hyperbola satisfying the given condition:
foci (0, ± \[\sqrt{10}\], passing through (2, 3).
Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.
Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.
Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).
The difference of the focal distances of any point on the hyperbola is equal to
Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.
Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.
The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.
Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
Find the equation of the hyperbola with vertices (0, ± 7), e = `4/3`
Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.
Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.