English

The Length of the Straight Line X − 3y = 1 Intercepted by the Hyperbola X2 − 4y2 = 1 is - Mathematics

Advertisements
Advertisements

Question

The length of the straight line x − 3y = 1 intercepted by the hyperbola x2 − 4y2 = 1 is 

Options

  • \[\frac{6}{\sqrt{5}}\]

  • \[3\sqrt{\frac{2}{5}}\]

  • \[6\sqrt{\frac{2}{5}}\]

  •  none of these

MCQ

Solution

\[6\sqrt{\frac{2}{5}}\]

The point of intersection of  \[x - 3y = 1\] and the hyperbola \[x^2 - 4 y^2 = 1\] is calculated in the following way:

\[\left( 1 + 3y \right)^2 - 4 y^2 = 1\]

\[ \Rightarrow 1 + 6y + 9 y^2 - 4 y^2 = 1\]

\[ \Rightarrow 5 y^2 + 6y = 0\]

\[ \Rightarrow y = 0 \text { or } y = - \frac{6}{5}\]

If  \[y = 0\],then  \[x = 1\].

If \[y = - \frac{6}{5}\], then \[x = 1 + 3 \times \left( - \frac{6}{5} \right) = - \frac{13}{5}\].

So, the points are \[\left( 1, 0 \right)\] and \[\left( - \frac{13}{5}, - \frac{6}{5} \right)\].

∴ Length = \[\sqrt{\left( 1 + \frac{13}{5} \right)^2 + \left( 0 + \frac{6}{5} \right)^2} = 6\sqrt{\frac{2}{5}}\]

shaalaa.com
Introduction of Hyperbola
  Is there an error in this question or solution?
Chapter 27: Hyperbola - Exercise 27.3 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 27 Hyperbola
Exercise 27.3 | Q 15 | Page 19
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×