Advertisements
Advertisements
Question
The length of the straight line x − 3y = 1 intercepted by the hyperbola x2 − 4y2 = 1 is
Options
\[\frac{6}{\sqrt{5}}\]
\[3\sqrt{\frac{2}{5}}\]
\[6\sqrt{\frac{2}{5}}\]
none of these
Solution
\[6\sqrt{\frac{2}{5}}\]
The point of intersection of \[x - 3y = 1\] and the hyperbola \[x^2 - 4 y^2 = 1\] is calculated in the following way:
\[\left( 1 + 3y \right)^2 - 4 y^2 = 1\]
\[ \Rightarrow 1 + 6y + 9 y^2 - 4 y^2 = 1\]
\[ \Rightarrow 5 y^2 + 6y = 0\]
\[ \Rightarrow y = 0 \text { or } y = - \frac{6}{5}\]
If \[y = 0\],then \[x = 1\].
If \[y = - \frac{6}{5}\], then \[x = 1 + 3 \times \left( - \frac{6}{5} \right) = - \frac{13}{5}\].
So, the points are \[\left( 1, 0 \right)\] and \[\left( - \frac{13}{5}, - \frac{6}{5} \right)\].
∴ Length = \[\sqrt{\left( 1 + \frac{13}{5} \right)^2 + \left( 0 + \frac{6}{5} \right)^2} = 6\sqrt{\frac{2}{5}}\]