English

A Point Moves in a Plane So that Its Distances Pa and Pb from Two Fixed Points a and B in the Plane Satisfy the Relation Pa − Pb = K (K ≠ 0), Then the Locus of P is - Mathematics

Advertisements
Advertisements

Question

A point moves in a plane so that its distances PA and PB from two fixed points A and B in the plane satisfy the relation PA − PB = k (k ≠ 0), then the locus of P is

Options

  •  a hyperbola

  •  a branch of the hyperbola

  • a parabola

  • an ellipse

MCQ

Solution

 a hyperbola

\[\text { Let } P(x, y) \text { be any point on the hyperbola } \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 . \]

By definition, we have: 

\[PA = e\left( x - \frac{a}{e} \right) = ex - a\]

\[\text { and } PB = e\left( x + \frac{a}{e} \right) = ex + a\]

\[ \therefore PB - PA = \left( ex + a \right) - \left( ex - a \right) = 2a = k\]

shaalaa.com
Introduction of Hyperbola
  Is there an error in this question or solution?
Chapter 27: Hyperbola - Exercise 27.3 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 27 Hyperbola
Exercise 27.3 | Q 6 | Page 19
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×