English

Show that the Set of All Points Such that the Difference of Their Distances from (4, 0) and (− 4,0) is Always Equal to 2 Represents a Hyperbola. - Mathematics

Advertisements
Advertisements

Question

Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.

Answer in Brief

Solution

Let the point be P(x, y)

[(x4)2+(y0)2][(x+4)2+(y0)2]=2

[(x4)2+(y0)2]2=[2+(x+4)2+(y0)2]2

(x4)2+y2=4+(x+4)2+y2+4(x+4)2+(y0)2

(x4)2(x+4)2=4+4(x+4)2+(y0)2

16x=4+4(x+4)2+(y0)2

16x4=4(x+4)2+(y0)2

4(4x+1)=4(x+4)2+(y0)2

(4x+1)=(x+4)2+(y0)2

16x2+8x+1=x2+8x+16+y2

15x2y2=15

x21y215=1

Which is the equation of a hyperbola.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Hyperbola - Exercise 27.1 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 27 Hyperbola
Exercise 27.1 | Q 13 | Page 14

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation of the hyperbola satisfying the given conditions:

Foci (±35,0), the latus rectum is of length 8.


Find the equation of the hyperbola satisfying the given conditions:

Foci (0,±10), passing through (2, 3)


Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = 3.


Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 4x2 − 3y2 = 36


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 3x2 − y2 = 4 


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the distance between the foci = 16 and eccentricity = 2.


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the conjugate axis is 7 and passes through the point (3, −2).


Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.


Find the equation of the hyperbola whose  foci are (4, 2) and (8, 2) and eccentricity is 2.


Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2. 


Find the equation of the hyperbola satisfying the given condition :

vertices (± 2, 0), foci (± 3, 0)


Find the equation of the hyperbola satisfying the given condition :

vertices (0, ± 3), foci (0, ± 5)


Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.


Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).


The difference of the focal distances of any point on the hyperbola is equal to


The foci of the hyperbola 9x2 − 16y2 = 144 are


The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is


The foci of the hyperbola 2x2 − 3y2 = 5 are


The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is


Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.


The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.


Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.


Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.


Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)


Find the equation of the hyperbola with foci (0,±10), passing through (2, 3)


The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.


The distance between the foci of a hyperbola is 16 and its eccentricity is 2. Its equation is ______.


Equation of the hyperbola with eccentricty 32 and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.