Advertisements
Advertisements
प्रश्न
Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.
उत्तर
Let the point be P(x, y)
\[\therefore \left[ \sqrt{\left( x - 4 \right)^2 + \left( y - 0 \right)^2} \right] - \left[ \sqrt{\left( x + 4 \right)^2 + \left( y - 0 \right)^2} \right] = 2\]
\[ \Rightarrow \left[ \sqrt{\left( x - 4 \right)^2 + \left( y - 0 \right)^2} \right]^2 = \left[ 2 + \sqrt{\left( x + 4 \right)^2 + \left( y - 0 \right)^2} \right]^2 \]
\[ \Rightarrow \left( x - 4 \right)^2 + y^2 = 4 + \left( x + 4 \right)^2 + y^2 + 4\sqrt{\left( x + 4 \right)^2 + \left( y - 0 \right)^2}\]
\[ \Rightarrow \left( x - 4 \right)^2 - \left( x + 4 \right)^2 = 4 + 4\sqrt{\left( x + 4 \right)^2 + \left( y - 0 \right)^2}\]
\[\Rightarrow - 16x = 4 + 4\sqrt{\left( x + 4 \right)^2 + \left( y - 0 \right)^2}\]
\[ \Rightarrow - 16x - 4 = 4\sqrt{\left( x + 4 \right)^2 + \left( y - 0 \right)^2}\]
\[ \Rightarrow - 4\left( 4x + 1 \right) = 4\sqrt{\left( x + 4 \right)^2 + \left( y - 0 \right)^2}\]
\[ \Rightarrow - \left( 4x + 1 \right) = \sqrt{\left( x + 4 \right)^2 + \left( y - 0 \right)^2}\]
\[ \Rightarrow 16 x^2 + 8x + 1 = x^2 + 8x + 16 + y^2 \]
\[ \Rightarrow 15 x^2 - y^2 = 15\]
\[ \Rightarrow \frac{x^2}{1} - \frac{y^2}{15} = 1\]
Which is the equation of a hyperbola.
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±5), foci (0, ±8)
Find the equation of the hyperbola satisfying the given conditions:
Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.
Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].
Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
9x2 − 16y2 = 144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
16x2 − 9y2 = −144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
4x2 − 3y2 = 36
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
3x2 − y2 = 4
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
2x2 − 3y2 = 5.
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 7 and passes through the point (3, −2).
Find the equation of the hyperbola whose foci are (4, 2) and (8, 2) and eccentricity is 2.
Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).
Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.
Find the equation of the hyperbola satisfying the given condition :
vertices (0, ± 5), foci (0, ± 8)
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
find the equation of the hyperbola satisfying the given condition:
vertices (± 7, 0), \[e = \frac{4}{3}\]
Find the equation of the hyperbola satisfying the given condition:
foci (0, ± \[\sqrt{10}\], passing through (2, 3).
Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.
Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).
The difference of the focal distances of any point on the hyperbola is equal to
The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is
The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is
The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.
If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.
Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
Find the equation of the hyperbola with vertices (0, ± 7), e = `4/3`
Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)
Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.