Advertisements
Advertisements
प्रश्न
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
16x2 − 9y2 = −144
उत्तर
Equation of the hyperbola: \[16 x^2 - 9 y^2 = - 144\]
This can be rewritten in the following way:
\[\frac{x^2}{9} - \frac{y^2}{16} = - 1\]
This is the standard equation of a hyperbola, where
\[a^2 = 9 \text { and } b^2 = 16\].
\[\Rightarrow a^2 = b^2 ( e^2 - 1)\]
\[ \Rightarrow 9 = 16( e^2 - 1)\]
\[ \Rightarrow e^2 - 1 = \frac{9}{16}\]
\[ \Rightarrow e^2 = \frac{25}{16}\]
\[ \Rightarrow e = \frac{5}{4}\]
Coordinates of foci are given by \[\left( 0, \pm ae \right)\] ,i.e.
\[\left( 0, \pm 5 \right)\] .
Equation of the directrices: \[y = \pm \frac{a}{e}\]
\[\Rightarrow y = \pm \frac{4}{\frac{5}{4}}\]
\[ \Rightarrow 5y \pm 16 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±5), foci (0, ±8)
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±3), foci (0, ±5)
Find the equation of the hyperbola satisfying the given conditions:
Foci (0, ±13), the conjugate axis is of length 24.
Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].
Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
4x2 − 3y2 = 36
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
3x2 − y2 = 4
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
2x2 − 3y2 = 5.
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 5 and the distance between foci = 13 .
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 7 and passes through the point (3, −2).
Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.
Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] .
Find the equation of the hyperbola whose vertices are at (± 6, 0) and one of the directrices is x = 4.
Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).
Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.
If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.
Find the equation of the hyperbola satisfying the given condition :
vertices (0, ± 3), foci (0, ± 5)
find the equation of the hyperbola satisfying the given condition:
vertices (± 7, 0), \[e = \frac{4}{3}\]
Find the equation of the hyperbola satisfying the given condition:
foci (0, ± \[\sqrt{10}\], passing through (2, 3).
The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is
Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.
Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
Find the equation of the hyperbola with vertices (0, ± 7), e = `4/3`
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.
The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.
The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.