Advertisements
Advertisements
प्रश्न
Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.
उत्तर
As the vertices are on the x-axis and their middle point is the origin
The equation is of the type `x^2/a^2 - y^2/b^2` = 1.
Here b2 = a2(e2 – 1)
Vertices are (± a, 0)
And Directrices are given by x = `+- a/e`.
Thus `a= 6, a/e` = 4
And so e = `3/2`
Which gives b2 = `36 9/4 - 1` = 45
Consequently, the required equation of the hyperbola is `x^2/36 - y^2/45` = 1
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±3), foci (0, ±5)
Find the equation of the hyperbola satisfying the given conditions:
Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(0, +- sqrt10)`, passing through (2, 3)
The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.
Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
2x2 − 3y2 = 5.
Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.
Find the equation of the hyperbola whose foci are (4, 2) and (8, 2) and eccentricity is 2.
Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2.
Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).
Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.
find the equation of the hyperbola satisfying the given condition:
vertices (± 7, 0), \[e = \frac{4}{3}\]
Find the equation of the hyperbola satisfying the given condition:
foci (0, ± \[\sqrt{10}\], passing through (2, 3).
Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.
Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).
The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is
Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.
The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.
The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.
If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.
Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.
The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.
The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.
The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.