Advertisements
Advertisements
प्रश्न
The distance between the foci of a hyperbola is 16 and its eccentricity is
पर्याय
x2 – y2 = 32
= 12x2 – 3y2 = 7
None of these
उत्तर
The distance between the foci of a hyperbola is 16 and its eccentricity is
Explanation:
We know that the distance between the foci = 2ae
∴ 2ae = 16
⇒ ae = 8
Given that e =
∴
⇒
Now b2 = a2 (e2 – 1)
⇒ b2 = 32(2 – 1)
⇒ b2 = 32
So, the equation of the hyperbola is
⇒
⇒ x2 – y2 = 32
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Foci (±5, 0), the transverse axis is of length 8.
Find the equation of the hyperbola satisfying the given conditions:
Foci (0, ±13), the conjugate axis is of length 24.
Find the equation of the hyperbola satisfying the given conditions:
Foci
Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
9x2 − 16y2 = 144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
16x2 − 9y2 = −144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
4x2 − 3y2 = 36
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 7 and passes through the point (3, −2).
Find the equation of the hyperbola whose foci are (4, 2) and (8, 2) and eccentricity is 2.
If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.
Find the equation of the hyperbola satisfying the given condition :
vertices (0, ± 5), foci (0, ± 8)
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is
The foci of the hyperbola 9x2 − 16y2 = 144 are
The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is
The foci of the hyperbola 2x2 − 3y2 = 5 are
Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.
The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.
The eccentricity of the hyperbola
If the distance between the foci of a hyperbola is 16 and its eccentricity is
Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.
Find the equation of the hyperbola with eccentricity
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)