हिंदी

The distance between the foci of a hyperbola is 16 and its eccentricity is 2. Its equation is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.

विकल्प

  • x2 – y2 = 32

  • `x^2/4 - y^2/9` = 1

  • 2x2 – 3y2 = 7

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is x2 – y2 = 32.

Explanation:

We know that the distance between the foci = 2ae

∴ 2ae = 16

⇒ ae = 8

Given that e = `sqrt(2)`

∴ `sqrt(2)a` = 8

⇒ `a = 4sqrt(2)`

Now b2 = a2 (e2  – 1)

⇒ b2 = 32(2 – 1)

⇒ b2 = 32

So, the equation of the hyperbola is `x^2/a^2 - y^2/b^2` = 1

⇒ `x^2/32 - y^2/32` = 1

⇒ x2 – y2 = 32

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise [पृष्ठ २०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise | Q 58 | पृष्ठ २०७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Foci (±5, 0), the transverse axis is of length 8.


Find the equation of the hyperbola satisfying the given conditions:

Foci (0, ±13), the conjugate axis is of length 24.


Find the equation of the hyperbola satisfying the given conditions:

Foci `(0, +- sqrt10)`, passing through (2, 3)


Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 4x2 − 3y2 = 36


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 3x2 − y2 = 4 


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

2x2 − 3y2 = 5.


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].


Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.


Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).


Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] . 


Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2. 


Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).


Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.


Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is


The foci of the hyperbola 9x2 − 16y2 = 144 are


The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is


The foci of the hyperbola 2x2 − 3y2 = 5 are


Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.


Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.


The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.


Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.


Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).


Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.


Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×