हिंदी

Find the equation of the hyperbola satisfying the given conditions: Foci (0,±10), passing through (2, 3) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Foci `(0, +- sqrt10)`, passing through (2, 3)

योग

उत्तर

Foci `(0, ±sqrt10)`

⇒ The transverse axis is along the y-axis.

and c = `sqrt10` or c2 = 10 = a2 + b2

∴ a2 + b2 = 10     ……(i)

Let the equation of hyperbola

`y^2/a^2 - x^2/b^2 = 1`

It goes from the point (2, 3)

∴ `9/a^2 - 4/b^2 = 1` or 9b2 − 4a2 = a2b2

By substituting the value of b2 from equation (i)

= 9(10 − a2) − 4a2 = a2 (10 − a2)

= 90 − 9a2 − 4a2 = 10a2 − a4

= a4 − 23a2 + 90 = 0

= a4 - 18a2 - 5a2 + 90 = 0

= (a2 − 18)(a2 − 5) = 0 

= a2 = 18 or 5

When, a2 = 18, b2 = 10 − a2

= 10 − 18

= −8

Hence, a2 ≠ 18

When a2 = 5, b2 = 10 − 5 = 5

∴ equation of hyperbola

`y^2/a^2 - x^2/b^2 = 1`

or `y^2/5 - x^2/5 = 1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise 11.4 [पृष्ठ २६२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise 11.4 | Q 15 | पृष्ठ २६२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.


Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].


Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].


Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

16x2 − 9y2 = −144


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 4x2 − 3y2 = 36


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the  conjugate axis is 5 and the distance between foci = 13 .


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the conjugate axis is 7 and passes through the point (3, −2).


Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.


Find the equation of the hyperbola whose  foci are (4, 2) and (8, 2) and eccentricity is 2.


Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2. 


Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).


Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.


Find the equation of the hyperbola satisfying the given condition :

vertices (± 2, 0), foci (± 3, 0)


Find the equation of the hyperbola satisfying the given condition :

 foci (0, ± 13), conjugate axis = 24


find the equation of the hyperbola satisfying the given condition:

 vertices (± 7, 0), \[e = \frac{4}{3}\]


Find the equation of the hyperbola satisfying the given condition:

 foci (0, ± \[\sqrt{10}\], passing through (2, 3).


Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.


Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).


Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is


The difference of the focal distances of any point on the hyperbola is equal to


The foci of the hyperbola 9x2 − 16y2 = 144 are


The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is


The foci of the hyperbola 2x2 − 3y2 = 5 are


The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is


If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.


Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.


Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).


Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.


Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)


The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.


Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×