Advertisements
Advertisements
प्रश्न
Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)
उत्तर
Given that: foci `(0, +- sqrt(10))`
∴ ae = `sqrt(10)`
⇒ `a^2e^2` = 10
We know that `b^2 = a^2(e^2 - 1)`
⇒ `b^2 = a^2e^2 - a^2`
⇒ `b^2 = 10 - a^2`
Equation of hyperbola is `y^2/a^2 - x^2/b^2` = 1
⇒ `y^2/a^2 - x^2/(10 - a^2)` = 1
If it passes through the point (2, 3) then
`9/a^2 - 4/(10 - a^2)` = 1
⇒ `(90 - 9a^2 - 4a^2)/(a^2(10 - a^2))` = 1
⇒ 90 – 13a2 = a2(10 – a2)
⇒ 90 – 13a2 = 10a2 – a4
⇒ a4 – 23a2 + 90 = 0
⇒ a4 – 18a2 – 5a2 + 90 = 0
⇒ a2(a2 – 18) – 5(a2 – 18) = 0
⇒ (a2 – 18)(a2 – 5) = 0
⇒ a2 = 18, a2 = 5
∴ b2 = 10 –18 = – 8 and b2 = 10 – 5 = 5
b ≠ – 8
∴ b2 = 5
Here, the required equation is `y^2/5 - x^2/5` = 1 or y2 – x2 = 5.
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Foci (±5, 0), the transverse axis is of length 8.
Find the equation of the hyperbola satisfying the given conditions:
Foci (0, ±13), the conjugate axis is of length 24.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(0, +- sqrt10)`, passing through (2, 3)
The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.
Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].
Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
9x2 − 16y2 = 144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
16x2 − 9y2 = −144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
3x2 − y2 = 4
Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.
Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).
Find the equation of the hyperbola whose foci are (4, 2) and (8, 2) and eccentricity is 2.
Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.
Find the equation of the hyperbola satisfying the given condition :
vertices (± 2, 0), foci (± 3, 0)
find the equation of the hyperbola satisfying the given condition:
vertices (± 7, 0), \[e = \frac{4}{3}\]
Find the equation of the hyperbola satisfying the given condition:
foci (0, ± \[\sqrt{10}\], passing through (2, 3).
The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is
The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.
If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.
The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.