हिंदी

The Equation of the Directrix of a Hyperbola is X − Y + 3 = 0. Its Focus is (−1, 1) and Eccentricity 3. Find the Equation of the Hyperbola. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.

संक्षेप में उत्तर

उत्तर

Let be the focus and 

\[P\left( x, y \right)\] be any point on the hyperbola.
Draw PM perpendicular to the directrix.
By definition:
SP = ePM

\[\Rightarrow \sqrt{\left( x - \left( - 1 \right) \right)^2 + \left( y - 1 \right)^2} = 3 \times \left( \frac{x - y + 3}{\sqrt{2}} \right)\]

Squaring both the sides, we get:

\[\left( x + 1 \right)^2 + \left( y - 1 \right)^2 = \frac{9}{2} \left( x - y + 3 \right)^2 \]

\[ \Rightarrow x^2 + 2x + 1 + y^2 - 2y + 1 = \frac{9}{2}\left( x^2 + y^2 + 9 - 2xy - 6y + 6x \right)\]

\[ \Rightarrow 2 x^2 + 4x + 2 + 2 y^2 - 4y + 2 = 9 x^2 + 9 y^2 + 81 - 18xy - 54y + 54x\]

\[ \Rightarrow 7 x^2 + 7 y^2 + 50x - 50y - 18xy + 77 = 0\]

Equation of the hyperbola:

\[7 x^2 + 7 y^2 + 50x - 50y - 18xy + 77 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Hyperbola - Exercise 27.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 27 Hyperbola
Exercise 27.1 | Q 1 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±5), foci (0, ±8)


Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±3), foci (0, ±5)


Find the equation of the hyperbola satisfying the given conditions:

Foci (±5, 0), the transverse axis is of length 8.


Find the equation of the hyperbola satisfying the given conditions:

Foci `(0, +- sqrt10)`, passing through (2, 3)


Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 4x2 − 3y2 = 36


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the  conjugate axis is 5 and the distance between foci = 13 .


Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).


Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] . 


Find the equation of the hyperbola whose vertices are at (± 6, 0) and one of the directrices is x = 4.


Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2. 


If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.


Find the equation of the hyperbola satisfying the given condition :

vertices (± 2, 0), foci (± 3, 0)


Find the equation of the hyperbola satisfying the given condition :

 foci (0, ± 13), conjugate axis = 24


find the equation of the hyperbola satisfying the given condition:

 vertices (± 7, 0), \[e = \frac{4}{3}\]


Find the equation of the hyperbola satisfying the given condition:

 foci (0, ± \[\sqrt{10}\], passing through (2, 3).


Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).


Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is


The difference of the focal distances of any point on the hyperbola is equal to


Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.


The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.


The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.


If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.


Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)


Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)


The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.


The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.


The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.


Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×