हिंदी

Find the equation of the hyperbola satisfying the given conditions: Foci (±5, 0), the transverse axis is of length 8. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Foci (±5, 0), the transverse axis is of length 8.

योग

उत्तर

Foci (±5, 0), the transverse axis is of length 8.

Here, the foci are on the x-axis.

Therefore, the equation of the hyperbola is of the form `x^2/a^2 - y^2/b^2 = 1`

Now, Foci are (±5, 0), c = 5.

Length of transverse axis 8, 2a = 8 = a = 4.

We know that a2 + b2 = c2.

Therefore, 42 + b2 = 52

b2 = 25 - 16 = 9

Thus, the equation of the hyperbola is = `x^2/16 - y^2/9 = 1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise 11.4 [पृष्ठ २६२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise 11.4 | Q 10 | पृष्ठ २६२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±5), foci (0, ±8)


Find the equation of the hyperbola satisfying the given conditions:

Foci (0, ±13), the conjugate axis is of length 24.


The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.


Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

9x2 − 16y2 = 144


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

2x2 − 3y2 = 5.


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the  conjugate axis is 5 and the distance between foci = 13 .


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the conjugate axis is 7 and passes through the point (3, −2).


Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).


If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.


Find the equation of the hyperbola satisfying the given condition :

vertices (± 2, 0), foci (± 3, 0)


Find the equation of the hyperbola satisfying the given condition :

 vertices (0, ± 5), foci (0, ± 8)


Find the equation of the hyperbola satisfying the given condition :

vertices (0, ± 3), foci (0, ± 5)


Find the equation of the hyperbola satisfying the given condition:

 foci (0, ± \[\sqrt{10}\], passing through (2, 3).


Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.


Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is


The difference of the focal distances of any point on the hyperbola is equal to


The foci of the hyperbola 9x2 − 16y2 = 144 are


Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.


Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.


The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.


If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.


The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.


The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.


The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.


The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.


Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×