Advertisements
Advertisements
प्रश्न
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
The given equations are
`sqrt(3)x - y - 4sqrt(3)k` = 0 ......(i)
`sqrt(3)kx + ky - 4sqrt(3)` = 0 ......(ii)
From equation (i) we get
`4sqrt(3)k = sqrt(3)x - y`
∴ `k = (sqrt(3)x - y)/(4sqrt(3))`
Putting the value of k in equation (ii), we get
`sqrt(3)[(sqrt(3)x - y)/(4sqrt(3))]x + [(sqrt(3)x - y)/(4sqrt(3))]y - 4sqrt(3)` = 0
⇒ `((sqrt(3)x - y)/4)x + ((sqrt(3)x - y)/(4sqrt(3)))y - 4sqrt(3)` = 0
⇒ `((3x - sqrt(3)y)x + (sqrt(3)x - y)y - 48)/(4sqrt(3))` = 0
⇒ `3x^2 - sqrt(3)xy + sqrt(3)xy - y^2 - 48` = 0
⇒ `3x^2 - y^2` = 48
⇒ `x^2/16 - y^2/48` = 1 which is a hyperbola.
Here a2 = 16, b2 = 48
We know that b2 = a2(e2 – 1)
⇒ 48 = 16(e2 – 1)
⇒ 3 = e2 – 1
⇒ e2 = 4
⇒ e = 2
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±3), foci (0, ±5)
Find the equation of the hyperbola satisfying the given conditions:
Foci `(0, +- sqrt10)`, passing through (2, 3)
The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.
Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].
Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
16x2 − 9y2 = −144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
4x2 − 3y2 = 36
Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).
Find the equation of the hyperbola whose foci are (4, 2) and (8, 2) and eccentricity is 2.
Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] .
Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).
If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.
Find the equation of the hyperbola satisfying the given condition :
vertices (± 2, 0), foci (± 3, 0)
Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.
Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).
The foci of the hyperbola 2x2 − 3y2 = 5 are
The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is
Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.
The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.
The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.
Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)
The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.
Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.