हिंदी

Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.

योग

उत्तर

As the vertices are on the x-axis and their middle point is the origin

The equation is of the type `x^2/a^2 - y^2/b^2` = 1.

Here b2 = a2(e2 – 1)

Vertices are (± a, 0)

And Directrices are given by x = `+-  a/e`.

Thus `a= 6, a/e` = 4

And so e = `3/2`

Which gives b2 = `36  9/4 - 1` = 45

Consequently, the required equation of the hyperbola is `x^2/36 - y^2/45` = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Solved Examples [पृष्ठ १९६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 11 Conic Sections
Solved Examples | Q 10 | पृष्ठ १९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±5), foci (0, ±8)


Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±3), foci (0, ±5)


Find the equation of the hyperbola satisfying the given conditions:

Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.


Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

9x2 − 16y2 = 144


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the conjugate axis is 7 and passes through the point (3, −2).


Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).


Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] . 


Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2. 


Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.


Find the equation of the hyperbola satisfying the given condition :

vertices (± 2, 0), foci (± 3, 0)


Find the equation of the hyperbola satisfying the given condition :

vertices (0, ± 3), foci (0, ± 5)


find the equation of the hyperbola satisfying the given condition:

 vertices (± 7, 0), \[e = \frac{4}{3}\]


Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.


The difference of the focal distances of any point on the hyperbola is equal to


The foci of the hyperbola 9x2 − 16y2 = 144 are


The foci of the hyperbola 2x2 − 3y2 = 5 are


The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is


Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.


Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)


The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.


The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.


The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×