हिंदी

Find the Equation of the Hyperbola Whose Focus is (1, 1), Directrix is 3x + 4y + 8 = 0 and Eccentricity = 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .

संक्षेप में उत्तर

उत्तर

Let be the focus and  \[P\left( x, y \right)\] be any point on the hyperbola.
Draw PM perpendicular to the directrix.
By definition:
SP = ePM

\[\Rightarrow\] \[\sqrt{(x - 1 )^2 + (y - 1 )^2} = 2\left( \frac{3x + 4y + 8}{5} \right)\]

Squaring both the sides:

\[(x - 1 )^2 + (y - 1 )^2 = 4 \left( \frac{3x + 4y + 8}{5} \right)^2 \]

\[ \Rightarrow x^2 + 1 - 2x + y^2 + 1 - 2y = \frac{4}{25}\left( 9 x^2 + 16 y^2 + 64 + 24xy + 64y + 48x \right)\]

\[ \Rightarrow 25 x^2 + 25 - 50x + 25 y^2 + 25 - 50y = 36 x^2 + 64 y^2 + 256 + 96xy + 256y + 192x\]

\[ \Rightarrow 11 x^2 + 39 y^2 + 96xy + 306y + 242x + 206 = 0\]

∴ Equation of the hyperbola = \[11 x^2 + 39 y^2 + 96xy + 306y + 242x + 206 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Hyperbola - Exercise 27.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 27 Hyperbola
Exercise 27.1 | Q 2.2 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±5), foci (0, ±8)


Find the equation of the hyperbola satisfying the given conditions:

Foci (0, ±13), the conjugate axis is of length 24.


The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.


Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].


Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

16x2 − 9y2 = −144


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

2x2 − 3y2 = 5.


Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] . 


Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.


Find the equation of the hyperbola satisfying the given condition :

vertices (± 2, 0), foci (± 3, 0)


Find the equation of the hyperbola satisfying the given condition :

 vertices (0, ± 5), foci (0, ± 8)


Find the equation of the hyperbola satisfying the given condition :

vertices (0, ± 3), foci (0, ± 5)


Find the equation of the hyperbola satisfying the given condition :

 foci (0, ± 13), conjugate axis = 24


find the equation of the hyperbola satisfying the given condition:

 vertices (± 7, 0), \[e = \frac{4}{3}\]


Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.


Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).


Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is


The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is


The foci of the hyperbola 2x2 − 3y2 = 5 are


Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.


The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.


If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.


Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).


Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.


Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)


Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)


The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.


Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×