Advertisements
Advertisements
प्रश्न
Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .
उत्तर
Let S be the focus and \[P\left( x, y \right)\] be any point on the hyperbola.
Draw PM perpendicular to the directrix.
By definition:
SP = ePM
\[\Rightarrow\] \[\sqrt{(x - 1 )^2 + (y - 1 )^2} = 2\left( \frac{3x + 4y + 8}{5} \right)\]
Squaring both the sides:
\[(x - 1 )^2 + (y - 1 )^2 = 4 \left( \frac{3x + 4y + 8}{5} \right)^2 \]
\[ \Rightarrow x^2 + 1 - 2x + y^2 + 1 - 2y = \frac{4}{25}\left( 9 x^2 + 16 y^2 + 64 + 24xy + 64y + 48x \right)\]
\[ \Rightarrow 25 x^2 + 25 - 50x + 25 y^2 + 25 - 50y = 36 x^2 + 64 y^2 + 256 + 96xy + 256y + 192x\]
\[ \Rightarrow 11 x^2 + 39 y^2 + 96xy + 306y + 242x + 206 = 0\]
∴ Equation of the hyperbola = \[11 x^2 + 39 y^2 + 96xy + 306y + 242x + 206 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±5), foci (0, ±8)
Find the equation of the hyperbola satisfying the given conditions:
Foci (0, ±13), the conjugate axis is of length 24.
The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.
Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].
Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
16x2 − 9y2 = −144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
2x2 − 3y2 = 5.
Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] .
Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.
Find the equation of the hyperbola satisfying the given condition :
vertices (± 2, 0), foci (± 3, 0)
Find the equation of the hyperbola satisfying the given condition :
vertices (0, ± 5), foci (0, ± 8)
Find the equation of the hyperbola satisfying the given condition :
vertices (0, ± 3), foci (0, ± 5)
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
find the equation of the hyperbola satisfying the given condition:
vertices (± 7, 0), \[e = \frac{4}{3}\]
Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.
Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).
Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is
The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is
The foci of the hyperbola 2x2 − 3y2 = 5 are
Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.
The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.
If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.
Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.