हिंदी

Find the equation of the hyperbola satisfying the given conditions: Foci (0, ±13), the conjugate axis is of length 24. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Foci (0, ±13), the conjugate axis is of length 24.

योग

उत्तर

Foci (0, ±13), the conjugate axis is of length 24.

Here, the foci are on the y-axis.

Therefore, the equation of the hyperbola is of the form `y^2/a^2 - x^2/b^2 = 1`

Now foci are (0, ±13), c = 13.

Length of the conjugate axis is 24, 2b = 24 ⇒ b = 12

We know that a2 + b2 = c2

∴ a2 + 122 = 132

⇒ a2 = 169 - 144 = 25

Thus, the equation of the hyperbola is `y^2/25 - x^2/144 = 1`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise 11.4 [पृष्ठ २६२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise 11.4 | Q 11 | पृष्ठ २६२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±5), foci (0, ±8)


Find the equation of the hyperbola satisfying the given conditions:

Foci `(0, +- sqrt10)`, passing through (2, 3)


Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

16x2 − 9y2 = −144


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the  conjugate axis is 5 and the distance between foci = 13 .


Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).


Find the equation of the hyperbola whose  foci are (4, 2) and (8, 2) and eccentricity is 2.


Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] . 


Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2. 


Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).


If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.


Find the equation of the hyperbola satisfying the given condition :

vertices (± 2, 0), foci (± 3, 0)


Find the equation of the hyperbola satisfying the given condition :

 vertices (0, ± 5), foci (0, ± 8)


Find the equation of the hyperbola satisfying the given condition :

vertices (0, ± 3), foci (0, ± 5)


Find the equation of the hyperbola satisfying the given condition :

 foci (0, ± 13), conjugate axis = 24


find the equation of the hyperbola satisfying the given condition:

 vertices (± 7, 0), \[e = \frac{4}{3}\]


Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.


Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is


The foci of the hyperbola 9x2 − 16y2 = 144 are


The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is


The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is


The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.


Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).


Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.


Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)


Find the equation of the hyperbola with vertices (0, ± 7), e = `4/3`


Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)


Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×