Advertisements
Advertisements
प्रश्न
Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.
विकल्प
`x^2/4 - y^2/5 = 4/9`
`x^2/9 - y^2/9 = 4/9`
`x^2/4 - y^2/9` = 1
None of these
उत्तर
Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is `x^2/4 - y^2/5 = 4/9`.
Explanation:
Given that e = `3/2`
And foci = (± ae, 0) = (± 2, 0)
∴ ae = 2
`a xx 3/2` = 2
⇒ `a = 4/3`
Now we know that b2 = a2(e2 – 1)
b2 = `16/9(9/4 - 1)`
b2 = `16/9 xx 5/4`
b2 = `20/9`
So, the equation of the hyperbola is `x^2/(4/3)^2 - y^2/(20/9)` = 1
⇒ `(9x^2)/16 - (9y^2)/20` = 1
⇒ `x^2/16 - y^2/20 = 1/9`
⇒ `x^2/4 - y^2/5 = 4/9`
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±5), foci (0, ±8)
Find the equation of the hyperbola satisfying the given conditions:
Foci (0, ±13), the conjugate axis is of length 24.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(0, +- sqrt10)`, passing through (2, 3)
The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.
Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].
Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
4x2 − 3y2 = 36
Find the equation of the hyperbola whose foci are (4, 2) and (8, 2) and eccentricity is 2.
Find the equation of the hyperbola whose vertices are at (± 6, 0) and one of the directrices is x = 4.
If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.
Find the equation of the hyperbola satisfying the given condition :
vertices (0, ± 5), foci (0, ± 8)
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.
Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).
The difference of the focal distances of any point on the hyperbola is equal to
The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is
Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.
The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.
The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.
The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.
The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.