हिंदी

The eccentricity of the hyperbola x2a2-y2b2 = 1 which passes through the points (3, 0) and (32,2) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.

रिक्त स्थान भरें

उत्तर

The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is e2 = `13/9`.

Explanation:

Given that the hyperbola `x^2/a^2 - y^2/b^2` = 1 is passing through the points (3, 0) and `(3 sqrt(2), 2)`

So we get a2 = 9 and b2 = 4

Again, we know that b2 = a2(e2 – 1).

This gives 4 = 9(e2 – 1)

or e2 = `13/9`

or e = `sqrt(13)/3`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Solved Examples [पृष्ठ २०१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 11 Conic Sections
Solved Examples | Q 23 | पृष्ठ २०१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

9x2 − 16y2 = 144


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

16x2 − 9y2 = −144


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 4x2 − 3y2 = 36


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the  conjugate axis is 5 and the distance between foci = 13 .


Find the equation of the hyperbola whose  foci are (4, 2) and (8, 2) and eccentricity is 2.


Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2. 


Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.


If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.


Find the equation of the hyperbola satisfying the given condition :

vertices (± 2, 0), foci (± 3, 0)


Find the equation of the hyperbola satisfying the given condition :

 vertices (0, ± 5), foci (0, ± 8)


Find the equation of the hyperbola satisfying the given condition :

vertices (0, ± 3), foci (0, ± 5)


Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.


Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.


Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).


The difference of the focal distances of any point on the hyperbola is equal to


The foci of the hyperbola 9x2 − 16y2 = 144 are


The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is


Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.


Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.


If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.


The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.


The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.


The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×