हिंदी

Find the Equation of the Hyperbola, Referred to Its Principal Axes as Axes of Coordinates, In the Conjugate Axis is 5 and the Distance Between Foci = 13 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the  conjugate axis is 5 and the distance between foci = 13 .

संक्षेप में उत्तर

उत्तर

The distance between the foci is \[2ae\] .

\[\therefore 2ae = 13\]

\[ \Rightarrow ae = \frac{13}{2}\]

Length of the conjugate axis,

\[2b = 5\]

\[\Rightarrow b = \frac{5}{2}\]

Also, \[b^2 = a^2 ( e^2 - 1)\]

\[ \Rightarrow \left( \frac{5}{2} \right)^2 = \left( \frac{13}{2} \right)^2 - a^2 \]

\[ \Rightarrow a^2 = \frac{169 - 25}{4}\]

\[ \Rightarrow a^2 = \frac{144}{4} = 36\]

\[ \Rightarrow a = 6\]

Therefore, the standard form of the hyperbola is \[\frac{x^2}{36} - \frac{4 y^2}{25} = 1\] . 

\[or 25 x^2 - 144 y^2 = 900\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Hyperbola - Exercise 27.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 27 Hyperbola
Exercise 27.1 | Q 6.2 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Foci `(0, +- sqrt10)`, passing through (2, 3)


Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the conjugate axis is 7 and passes through the point (3, −2).


Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.


Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2. 


Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).


If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.


Find the equation of the hyperbola satisfying the given condition :

vertices (± 2, 0), foci (± 3, 0)


Find the equation of the hyperbola satisfying the given condition :

vertices (0, ± 3), foci (0, ± 5)


Find the equation of the hyperbola satisfying the given condition :

 foci (0, ± 13), conjugate axis = 24


Find the equation of the hyperbola satisfying the given condition:

 foci (0, ± \[\sqrt{10}\], passing through (2, 3).


Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.


Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).


Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is


The difference of the focal distances of any point on the hyperbola is equal to


The foci of the hyperbola 2x2 − 3y2 = 5 are


The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is


Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.


If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.


Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.


Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).


Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)


Find the equation of the hyperbola with vertices (0, ± 7), e = `4/3`


Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)


The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.


The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.


Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×