Advertisements
Advertisements
प्रश्न
Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.
उत्तर
Given equation is 9y2 – 4x2 = 36
⇒ `y^2/4 - x^2/9` = 1
Clearly it is a vertical hyperbola.
Where a = 3 and b = 2
We know that b2 = a2(e2 – 1)
⇒ 4 = 9(e2 – 1)
⇒ e2 – 1 = `4/9`
⇒ e2 = `1 + 4/9 = 13/9`
∴ e = `sqrt(13)/3`
Hence, the required value of e is `sqrt(13)/3`.
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Foci (±5, 0), the transverse axis is of length 8.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.
The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.
Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
9x2 − 16y2 = 144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
4x2 − 3y2 = 36
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
3x2 − y2 = 4
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 5 and the distance between foci = 13 .
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 7 and passes through the point (3, −2).
Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.
Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] .
Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).
If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
find the equation of the hyperbola satisfying the given condition:
vertices (± 7, 0), \[e = \frac{4}{3}\]
Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).
The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is
The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is
Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.
The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.