हिंदी

Find the equation of the hyperbola with eccentricity 32 and foci at (± 2, 0). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).

योग

उत्तर

Given that e = `3/2` and foci at (± 2, 0)

We know that foci = (± ae, 0)

∴ ae = 2

⇒ `a xx 3/2` = 2

⇒ `a = 4/3`

⇒ `a^2 = 16/9`

We know that b2 = a2(e2 – 1)

⇒ `b^2 = 16/9(9/4 - 1)`

= `16/9 xx 5/4`

= `20/9`

So, the equation of the hyperbola is `x^2/(16/9) - y^2/(20/9)` = 1

⇒ `(9x^2)/16 - (9y^2)/20` = 1

⇒ `x^2/4 - y^2/5 = 4/9`

Hence, the required equation is `x^2/4 - y^2/5 = 4/9`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise [पृष्ठ २०३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise | Q 22 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Foci (±5, 0), the transverse axis is of length 8.


Find the equation of the hyperbola satisfying the given conditions:

Foci (0, ±13), the conjugate axis is of length 24.


Find the equation of the hyperbola satisfying the given conditions:

Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.


Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

16x2 − 9y2 = −144


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

2x2 − 3y2 = 5.


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].


Find the equation of the hyperbola whose  foci are (4, 2) and (8, 2) and eccentricity is 2.


Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] . 


Find the equation of the hyperbola whose vertices are at (± 6, 0) and one of the directrices is x = 4.


Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2. 


Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).


Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.


If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.


Find the equation of the hyperbola satisfying the given condition :

 foci (0, ± 13), conjugate axis = 24


Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.


Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).


The foci of the hyperbola 9x2 − 16y2 = 144 are


The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is


The foci of the hyperbola 2x2 − 3y2 = 5 are


The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.


Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.


The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.


The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.


The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×