Advertisements
Advertisements
प्रश्न
Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.
उत्तर
The equation of the hyperbola with centre (x0,y0) is given by
\[\frac{\left( x - x_0 \right)^2}{a^2} - \frac{\left( y - y_0 \right)^2}{b^2} = 1\]
Focus = \[\left( ae + x_0 , y_0 \right)\]
\[\therefore ae = - 2\]
\[ \Rightarrow a = - 1\]
\[ b^2 = \left( 2 \right)^2 - a^2 \]
\[ \Rightarrow b^2 = \left( - 2 \right)^2 - \left( - 1 \right)^2 \]
\[ \Rightarrow b^2 = 3\]
\[\Rightarrow \frac{\left( x - 6 \right)^2}{1} - \frac{\left( y - 2 \right)^2}{3} = 1\]
\[ \Rightarrow 3 \left( x - 6 \right)^2 - \left( y - 2 \right)^2 = 3\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±5), foci (0, ±8)
Find the equation of the hyperbola satisfying the given conditions:
Foci (±5, 0), the transverse axis is of length 8.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.
Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
9x2 − 16y2 = 144
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].
Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.
Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).
Find the equation of the hyperbola whose foci are (4, 2) and (8, 2) and eccentricity is 2.
Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] .
Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).
If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.
Find the equation of the hyperbola satisfying the given condition :
vertices (0, ± 3), foci (0, ± 5)
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
Find the equation of the hyperbola satisfying the given condition:
foci (0, ± \[\sqrt{10}\], passing through (2, 3).
Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.
Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).
The foci of the hyperbola 9x2 − 16y2 = 144 are
The foci of the hyperbola 2x2 − 3y2 = 5 are
Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.
Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.
The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.
If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.
Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
Find the equation of the hyperbola with vertices (0, ± 7), e = `4/3`
Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.
The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.
The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.
Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.