हिंदी

Find the equation of the hyperbola with vertices (0, ± 7), e = 43 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the hyperbola with vertices (0, ± 7), e = `4/3`

योग

उत्तर

Given that vertices (0, ± 7), e = `4/3`

Clearly, the hyperbola is vertical.

Vertices = (± 0, a)

∴ a = 7 and e = `4/3`

We know that b2 = a2(e2 – 1)

⇒ b2 = `49(16/9 - 1)`

⇒ b2 = `49 xx 7/9`

⇒ b2 = `343/9`

Hence, the equation of the hyperbola is `y^2/49 - (9x^2)/343` = 1

⇒ 9x2 – 7y2 + 343 = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise [पृष्ठ २०४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise | Q 32.(b) | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±5), foci (0, ±8)


Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±3), foci (0, ±5)


Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].


Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].


Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 4x2 − 3y2 = 36


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

2x2 − 3y2 = 5.


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the  conjugate axis is 5 and the distance between foci = 13 .


Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.


Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] . 


Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).


If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.


Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).


The difference of the focal distances of any point on the hyperbola is equal to


Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.


The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.


If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.


Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.


Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)


The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.


Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×