Advertisements
Advertisements
प्रश्न
Find the equation of the hyperbola with vertices (0, ± 7), e = `4/3`
उत्तर
Given that vertices (0, ± 7), e = `4/3`
Clearly, the hyperbola is vertical.
Vertices = (± 0, a)
∴ a = 7 and e = `4/3`
We know that b2 = a2(e2 – 1)
⇒ b2 = `49(16/9 - 1)`
⇒ b2 = `49 xx 7/9`
⇒ b2 = `343/9`
Hence, the equation of the hyperbola is `y^2/49 - (9x^2)/343` = 1
⇒ 9x2 – 7y2 + 343 = 0
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Foci `(0, +- sqrt10)`, passing through (2, 3)
Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
9x2 − 16y2 = 144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
16x2 − 9y2 = −144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
4x2 − 3y2 = 36
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
2x2 − 3y2 = 5.
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].
Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.
Find the equation of the hyperbola whose foci are (4, 2) and (8, 2) and eccentricity is 2.
Find the equation of the hyperbola whose vertices are at (± 6, 0) and one of the directrices is x = 4.
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
find the equation of the hyperbola satisfying the given condition:
vertices (± 7, 0), \[e = \frac{4}{3}\]
Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.
The difference of the focal distances of any point on the hyperbola is equal to
Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.
The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.
The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.
If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.
Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.