Advertisements
Advertisements
प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Foci `(0, +- sqrt10)`, passing through (2, 3)
उत्तर
Foci `(0, ±sqrt10)`
⇒ The transverse axis is along the y-axis.
and c = `sqrt10` or c2 = 10 = a2 + b2
∴ a2 + b2 = 10 ……(i)
Let the equation of hyperbola
`y^2/a^2 - x^2/b^2 = 1`
It goes from the point (2, 3)
∴ `9/a^2 - 4/b^2 = 1` or 9b2 − 4a2 = a2b2
By substituting the value of b2 from equation (i)
= 9(10 − a2) − 4a2 = a2 (10 − a2)
= 90 − 9a2 − 4a2 = 10a2 − a4
= a4 − 23a2 + 90 = 0
= a4 - 18a2 - 5a2 + 90 = 0
= (a2 − 18)(a2 − 5) = 0
= a2 = 18 or 5
When, a2 = 18, b2 = 10 − a2
= 10 − 18
= −8
Hence, a2 ≠ 18
When a2 = 5, b2 = 10 − 5 = 5
∴ equation of hyperbola
`y^2/a^2 - x^2/b^2 = 1`
or `y^2/5 - x^2/5 = 1`
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±5), foci (0, ±8)
Find the equation of the hyperbola satisfying the given conditions:
Foci (±5, 0), the transverse axis is of length 8.
The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.
Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
9x2 − 16y2 = 144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
4x2 − 3y2 = 36
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
3x2 − y2 = 4
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
2x2 − 3y2 = 5.
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 5 and the distance between foci = 13 .
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 7 and passes through the point (3, −2).
Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.
Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).
Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] .
Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2.
Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).
Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.
Find the equation of the hyperbola satisfying the given condition :
vertices (± 2, 0), foci (± 3, 0)
Find the equation of the hyperbola satisfying the given condition :
vertices (0, ± 5), foci (0, ± 8)
The difference of the focal distances of any point on the hyperbola is equal to
The foci of the hyperbola 9x2 − 16y2 = 144 are
The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is
Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.
The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.
The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.
The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.
Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.