Advertisements
Advertisements
प्रश्न
Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).
उत्तर
The centre of the hyperbola is given below: \[\left( \frac{- 8 + 16}{2}, \frac{- 1 - 1}{2} \right) = \left( 4, - 1 \right)\] If the other focus is \[S'\left( m, n \right)\] ,then it is calculated in the following way:
\[4 = \frac{17 + m}{2}\]
\[ \Rightarrow m = - 9\]
And \[- 1 = \frac{- 1 + n}{2}\]
\[ \Rightarrow n = - 1\]
Thus, the other focus is \[\left( - 9, - 1 \right)\].
Distance between the vertices:
\[ 2a = \sqrt{\left( 16 + 8 \right)^2 + \left( - 1 + 1 \right)^2}\]
\[ \Rightarrow 2a = 24\]
\[ \Rightarrow a = 12\]
Distance between the foci:
\[2c = \sqrt{\left( 17 + 9 \right)^2 + \left( - 1 + 1 \right)^2}\]
\[ \Rightarrow 2c = 26\]
\[ \Rightarrow c = 13\]
\[Also, c^2 = a^2 + b^2 \]
\[ \Rightarrow b^2 = 169 - 144\]
\[ \Rightarrow b^2 = 25\]
Equation of the hyperbola is given below:
\[\frac{\left( x - 4 \right)^2}{144} - \frac{\left( y + 1 \right)^2}{25} = 1\]
\[ \Rightarrow \frac{x^2 - 8x + 16}{144} - \frac{\left( y^2 + 2y + 1 \right)}{25} = 1\]
\[ \Rightarrow 25 x^2 - 200x + 400 - \left( 144 y^2 + 288y + 144 \right) = 3600\]
\[ \Rightarrow 25 x^2 - 200x - 144 y^2 - 288y - 3344 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±3), foci (0, ±5)
Find the equation of the hyperbola satisfying the given conditions:
Foci (±5, 0), the transverse axis is of length 8.
Find the equation of the hyperbola satisfying the given conditions:
Foci (0, ±13), the conjugate axis is of length 24.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(0, +- sqrt10)`, passing through (2, 3)
Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].
Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].
Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
9x2 − 16y2 = 144
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
4x2 − 3y2 = 36
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
2x2 − 3y2 = 5.
Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.
Find the equation of the hyperbola whose foci are (4, 2) and (8, 2) and eccentricity is 2.
Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2.
Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).
If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.
Find the equation of the hyperbola satisfying the given condition :
vertices (± 2, 0), foci (± 3, 0)
find the equation of the hyperbola satisfying the given condition:
vertices (± 7, 0), \[e = \frac{4}{3}\]
Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.
Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.
Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is
The difference of the focal distances of any point on the hyperbola is equal to
The foci of the hyperbola 9x2 − 16y2 = 144 are
The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is
Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.
The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.
The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.
If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.
Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)
The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.
The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.
The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.